Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(1\le x;y;z\le2\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)\le0\\\left(y-1\right)\left(y-2\right)\le0\\\left(z-1\right)\left(z-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{x^2+2}{3}\\y\ge\frac{y^2+2}{3}\\z\ge\frac{z^2+2}{3}\end{matrix}\right.\) \(\Rightarrow x+y+z\ge\frac{x^2+y^2+z^2+6}{3}=4\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;2\right)\) và hoán vị

a)ko bít đề bắt làm j
b)Px=x(1+x+x2+...+x2015+x2018)
Px=x+x2+...+x2017
Px-P=(x+x2+...+x2017)-(1+x+x2+...+x2015+x2018)
P(x-1)=x2017-1
P=(x2017-1)/(x-1)

2)
Theo hệ quả của bất đẳng thức Cauchy ta có
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Do \(x^2+y^2+z^2\le3\)
\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow1\ge xy+yz+xz\)
\(\Rightarrow4\ge xy+yz+xz+3\)
\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )
Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)
Vậy \(C_{min}=\dfrac{9}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)

2) a) \(\frac{x^2-5x+1}{2x+1}+2=-\frac{x^2-4x+1}{x+1}\) (ĐKXĐ: \(x\ne-\frac{1}{2};-1\))
+) x = \(-\frac{2}{3}\), thay vào đề không TM
+ x\(\ne-\frac{2}{3}\)
Từ đề \(\Rightarrow\frac{x^2-5x+1+4x+2}{2x+1}=\frac{-x^2+4x-1}{x+1}\)
\(\Leftrightarrow\frac{x^2-x+3}{2x+1}=\frac{-x^2+4x-1}{x+1}=\frac{\left(x^2-x+3\right)+\left(-x^2+4x-1\right)}{\left(2x+1\right)+\left(x+1\right)}\) \(=\frac{3x+2}{3x+2}=1\)
\(\Rightarrow x^2-x+3=2x+1\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow\left[\begin{matrix}x-\frac{3}{2}=\frac{1}{2}\\x-\frac{3}{2}=-\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy ...
Em thử giải,anh tự check lại ạ,em mới lớp 7 thôi.
Ta có: \(x+\frac{1}{x}\inℤ\Rightarrow\frac{x^2+1}{x}\inℤ\)
Do đó \(x^2+1⋮x\),mà \(x^2⋮x\Rightarrow1⋮x\Rightarrow x=\pm1\)
Với x = 1 thì \(A_n=x^n+\frac{1}{x^n}=1+1=2\inℤ\)
Với x = -1 thì \(A_n=x^n+\frac{1}{x^n}=\left(-1\right)+\left(-1\right)=\left(-2\right)\inℤ\)
Vậy ta có đpcm.