K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 2 2020

Với \(x=\frac{3}{2}\)\(n=2\) BĐT sai

Nói chung với \(\left\{{}\begin{matrix}n\ge1\\1< x< 2\end{matrix}\right.\) thì BĐT này luôn sai

2 tháng 2 2020

sai cc oe

24 tháng 2 2020

\(VT=x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\sqrt{3\left(x^2+y^2+z^2\right)}}=3\)

Vậy BĐT được chứng minh . Dấu = xảy ra khi \(a=b=c=1\)

NV
29 tháng 9 2019

\(VP=\left(2-x\right)\left(2-z\right)\left(2-y\right)=\left(y+z\right)\left(x+y\right)\left(2-y\right)\le\frac{\left(x+2y+z\right)^2}{4}\left(2-y\right)\)

\(VP\le\left(x+2y+z\right).\frac{\left(x+2y+z\right)\left(2-y\right)}{4}\le\left(x+2y+z\right)\frac{\left(x+y+z+2\right)^2}{16}=x+2y+z\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=z=1\\y=0\end{matrix}\right.\)

NV
2 tháng 10 2019

Đề bài sai bạn: ví dụ cho \(y=z=0\); \(x=4\) thì \(\frac{4}{6}\le\frac{1}{3}\) (vô lý)

NV
25 tháng 2 2020

\(\frac{6}{2xy+2yz+2zx}+\frac{2}{x^2+y^2+z^2}\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=8+4\sqrt{3}>14\)

Dấu "=" không xảy ra

13 tháng 11 2017

Ai jup m câu này với