Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có\(x-2y+3z=22\)
\(\Leftrightarrow2k-6k+15k=22\)
\(\Leftrightarrow11k=22\Leftrightarrow k=2\)
Do đó \(\hept{\begin{cases}\frac{x}{2}=2\Leftrightarrow x=4\\\frac{y}{3}=2\Leftrightarrow y=6\\\frac{z}{5}=2\Leftrightarrow z=10\end{cases}}\)
2.
Theo tính chất dãy tỉ số bằng nhau\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{150}{-12}=-\frac{25}{2}\)
Ta có
\(\frac{x}{2}=-\frac{25}{2}\Leftrightarrow x=2.\left(-25\right):2=-25\)
\(\frac{y}{3}=-\frac{25}{2}\Leftrightarrow y=3.\left(-25\right):2=-\frac{75}{2}\)
\(\frac{z}{5}=-\frac{25}{2}\Leftrightarrow z=5.\left(-25\right):2=-\frac{125}{2}\)
Thử lại ko đúng cách đặt thì \(k^2=-\frac{25}{2}\left(ktm\right)\) mình nghĩ đề sai
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
2) Theo đề được: \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{5x}{25}=\frac{3y}{21}\)
Áp dụng t/c dãy tỉ số = nhau được:
\(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{3y}{21}=\frac{5x}{25}=\frac{3x-4y}{15-28}=\frac{3x-4y}{-13}\)
và \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{3y}{21}=\frac{5x}{25}=\frac{2z+3y-5x}{18+21-25}=\frac{2z+3y-5x}{14}\)
Vì \(\frac{3x-4y}{-13}=\frac{2z+3y-5x}{14}\) nên \(\frac{3x-4y}{2z+3y-5x}=\frac{-13}{14}\)
1) Ta có: \(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\) hay\(\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)
Do đó: \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
=> \(\left(\frac{x}{2}\right)^2=\left(\frac{y}{4}\right)^2=\left(\frac{z}{6}\right)^2\) hay \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau được:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\sqrt{\frac{1}{4}}=\frac{1}{2}\)
=> x=1 ; y=2 ; z=3
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
2x-3y+4z=5
=>2x-3y-4.(-3x-3y-3)=5
14x+9y=-17
14x+9.(-8x:7+1)=-17
26x:7=-26
26x=-26.7
26x=-182
x=-182:26
x=-7
mình chỉ làm đc z thôi ko biết có đ ko.
- Theo đề bài,ta có:
\(\frac{2}{x}=\frac{3}{y}=\frac{1}{z}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{1}\)
a) Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}\) và 2x-3y+4z
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}=\frac{2x-3y+4z}{2.2-3.3+4.1}=\frac{5}{-1}=-5\)
- \(\frac{x}{2}=\left(-5\right).2=-10\)
- \(\frac{y}{3}=\left|\left(-5\right).3=-15\right|\)
- \(\frac{z}{1}=\left(-5\right).1=-5\)
Vậy x=-10,y=-15,z=-5
b) Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{1}=\frac{x^2.y^2.z^2}{2^2.3^2.1^2}=\frac{36}{36}=1\)
Áp dụng tính chất của dãy tỉ só bằng nhau:
- \(\frac{x}{2}=1.2=2\)
- \(\frac{y}{3}=1.3=3\)
- \(\frac{z}{1}=1.1=1\)
Vậy x=2,y=3,z=1.
^...^ ^_^
Ta có :
- x/3 = y/7 suy ra : x/6 = y/14
- y/2 = z/5 suy ra : y/14 = z/35
Và ................................
Kết quả là : x = 24 ; z = 140
ai tk mk mk tk lại
Ta có:
- x/3 = y/7 suy ra: x/6 = y/14
- y/2 = z/5 suy ra: y/14 = z/35
Và.......................................................
Nói chung kết quả: x=24
y=56
z=140
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)
Sau đó áp dụng như bình thường
thế còn só 3