Cho x O y ^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Luyện tập về ba trường hợp bằng nhau của tam giác

20 tháng 4 2017

Giải bài 43 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 43 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7

21 tháng 12 2016

cái đề dài thế này, chả biết khó hay ko nhưng mà ngại làm quá :[

21 tháng 12 2016

hình như câu b cho đề sai, pải là: ∆EAB=∆ECD mới đúng

 

23 tháng 12 2017

a) Ta có: OD = OB + BD

          OC=OA+AC

 mà OA=OB; AC=BD

=>OD=OC

Xét 2 TG ODA và OCB;ta có:

 OA-OB(gt); O:góc chung; OD=OC(cmt)

=>TG ODA= TG OCB(c.g.c)

=>AD=BC(2 cạnh tương ứng)

b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)

    =>OAD=OBC(2 góc tương ứng)

 Ta có: OAD+EAC=180

          OBC+EBD=180

Từ (1) và (2)=> OAD+EAC=OBC+EBD=180

mà OAD=OBC(cmt)=>EAC=EBD

Xét 2 TG EAC và EBD; ta có:

    AC=BD(gt); C=D(cmt); EAC=EBD(cmt)

=>TG EAC=TG EBD (g.c.g)

c. Vì TG EAC=TG EBD=> EA=EB(2 cạnh tương ứng)

Xét TG OBE và OAE, ta có:

  OA=OB(gt); EA=EB(cmt); OE:cạnh chung

=>TG OBE=TG OAE(c.c.c)

=>BOE=EOA(2 cạnh tương ứng)

mà OE nằm giữa OA và OB=> OE là phân giác của góc xOy

Không pt đúng ko

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Ta có: ΔOAD=ΔOBC

nên \(\widehat{OAD}=\widehat{OBC}\)

\(\Leftrightarrow180^0-\widehat{OAD}=180^0-\widehat{OBC}\)

hay \(\widehat{EAB}=\widehat{ECD}\)

Xét ΔEAB và ΔECD có 

\(\widehat{EAB}=\widehat{ECD}\)

AB=CD

\(\widehat{EBA}=\widehat{EDC}\)

Do đó: ΔEAB=ΔECD

c: Ta có: ΔEAB=ΔECD

nên EB=ED

Xét ΔOEB và ΔOED có 

OE chung

EB=ED

OB=OD

Do đó: ΔOEB=ΔOED

Suy ra: \(\widehat{BOE}=\widehat{DOE}\)

hay OE là tia phân giác của góc xOy

9 tháng 12 2016

Ta có hình vẽ:

x O y A B C D E

a/ Xét tam giác OAD và tam giác OBC có:

OA = OC (GT)

\(\widehat{O}\): góc chung

OB = OD (GT)

=> tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)

b/ Ta có: \(\widehat{B}\)=\(\widehat{D}\) (vì tam giác OAD = tam giác OBC) (1)

Ta có: \(\begin{cases}OA=OC\\OB=OD\end{cases}\)\(\Rightarrow AB=CD\) (2)

Ta có: \(\widehat{OAD}\)=\(\widehat{OCB}\) (vì tam giác OAD = tam giác OBC) (*)

+)Ta có: \(\widehat{OAD}\)+\(\widehat{DAB}\)=1800 (**)

+) Ta có: \(\widehat{OCB}\)+\(\widehat{BCD}\)=1800 (***)

Từ (*),(**),(***) => \(\widehat{DAB}\)=\(\widehat{BCD}\) (3)

Từ (1),(2),(3) => tam giác EAB = tam giác ECD

c/ Xét tam giác OAE và tam giác OCE có:

OA = OC (GT)

AE = EC (vì tam giác EAB = tam giác ECD)

OE: cạnh chung

=> tam giác OAE = tam giác OCE (c.c.c)

=> \(\widehat{AOE}\)=\(\widehat{COE}\) (2 góc tương ứng)

=> OE là phân giác \(\widehat{xOy}\) (đpcm)

9 tháng 12 2016

em xin lỗi nha

16 tháng 7 2017

a) ∆OAD và ∆OCB có: OA= OC(gt)

=(=)

OD=OB(gt)

Nên ∆OAD=∆OCB(c.g.c)

suy ra AD=BC.

b) ∆OAD=∆OCB(cmt)

Suy ra: 

 = => =

Do đó ∆AOE = ∆OCE(c .c.c)

suy ra: =

vậy OE là tia phân giác của xOy.

b) ∆AEB= ∆CED(câu b) => EA=EC.

∆OAE và ∆OCE có: OA=OC(gt)

EA=EC(cmt)

OE là cạnh chung.

Nên ∆OAE=∆(OCE)(c .c.c)

suy ra: =

vậy OE là tia phân giác của góc xOy.