K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

ta có \(x\ge-\frac{1}{2}\) thế vào A ta đc

\(A=\sqrt{2.\left(-\frac{1}{2}\right)^2+5.\left(-\frac{1}{2}\right)+2}+2\sqrt{\left(-\frac{1}{2}\right)+3}-2\left(-\frac{1}{2}\right)\)

\(=6\)

vậy Min A = 6 Khi \(x=-\frac{1}{2}\)

a: \(=4a-4\sqrt{10a}-9\sqrt{10a}=4a-13\sqrt{10a}\)

b: \(=\sqrt{x}\left(4-\sqrt{2}\right)\cdot\sqrt{x}\left(1-\sqrt{2}\right)\)

\(=x\cdot\left(4-4\sqrt{2}-\sqrt{2}+2\right)\)

\(=\left(6-5\sqrt{2}\right)x\)

c: \(=\dfrac{2}{2x-1}\cdot x\sqrt{5}\cdot\left(2x-1\right)=2x\sqrt{5}\)

26 tháng 5 2019

\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)

\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)

... 

NV
8 tháng 4 2019

c/

\(\left(x-4\right)P+y^2+2xy+1+\left|2x+3y+1\right|=0\)

\(\Leftrightarrow\frac{\left(x-4\right)\left(x^2-1\right)}{x-4}+y^2+2xy+1+\left|2x+3y+1\right|=0\)

\(\Leftrightarrow x^2+y^2+2xy+\left|2x+3y+1\right|=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left|2x+3y+1\right|=0\)

Do \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left|2x+3y+1\right|\ge0\end{matrix}\right.\) \(\forall x;y\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\2x+3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

NV
8 tháng 4 2019

ĐKXĐ: \(x\ge0;x\ne4\)

\(P=\left(\frac{\sqrt{x}+2}{\sqrt{x}+3}+\frac{x^2-x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\right)\)

\(P=\left(\frac{x-4+x^2-x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{x+3\sqrt{x}+\sqrt{x}+4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\right)\)

\(P=\left(\frac{x^2-1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2}\right)\)

\(P=\frac{x^2-1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}.\left(\frac{\sqrt{x}+3}{\sqrt{x}+2}\right)\)

\(P=\frac{x^2-1}{x-4}\)

b/ Để \(P\ge0\Leftrightarrow\frac{x^2-1}{x-4}\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-1\ge0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-1\le0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>4\\-1\le x\le1\end{matrix}\right.\)

Kết hợp với ĐKXĐ \(x\ge0\), \(\Leftrightarrow\left[{}\begin{matrix}x>4\\0\le x\le1\end{matrix}\right.\)