Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) sin = đối / huyền => sinx < 1 => sinx - 1 < 0
b) cos = kề / huyền => cosx < 1 => 1 - cosx > 0
c) sinx - cosx = sinx - sin(90-x)
Nếu x > 90-x hay x > 45 thì sinx - sin(90-x) > 0 hay sinx - cosx > 0
Nếu x < 90-x hay x < 45 thì sinx - sin(90-x) < 0 hay sinx - cosx < 0
d) Tương tự câu c)
Ta có: với 0 ° < α < 90 ° thì cosx < 1, suy ra 1 – cosx > 0
Ta có: với 0 ° < α < 90 ° thì sinx < 1, suy ra sinx – 1 < 0
Ta có: *nếu x = 45 ° thì tgx = cotgx, suy ra: tgx – cotgx = 0
*nếu x < 45 ° thì cotgx = tg( 90 ° – x)
Vì x < 45 ° nên 90 ° – x > 45 ° , suy ra: tgx < tg( 90 ° – x)
Vậy tgx – cotgx < 0
*nếu x > 45 ° thì cotgx = tg( 90 ° – x)
Vì x > 45 ° nên 90 ° – x < 45 ° , suy ra: tgx > tg( 90 ° – x)
Vậy tgx – cotgx > 0.
a: \(0< \sin x< 1\)
nên \(\sin x-1< 0\)
b: \(0< \cos x< 1\)
nên \(1-\cos x>0\)
Cho góc nhọn a mà biểu thức ghi x thì hơi lạ nha =))
(Mình giải theo biểu thức nha)
\(A=\left(\sin x+\cos x\right)^2+\left(\sin x-\cos x\right)^2\\ =\sin^2x+2\sin x\cdot\cos x+\cos^2x+\sin^2x-2\sin x\cdot\cos x+\cos^2x\\ =2\sin^2x+2\cos^2x\\ =2\left(\sin^2x+\cos^2x\right)\\ =2\cdot1=2\)
ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\)
Ta có:
\(\left\{{}\begin{matrix}tanx=3\\sin^2x+cos^2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sinx=3cosx\\9cos^2x+cos^2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sinx=3cosx\\cos^2x=\dfrac{1}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sinx=3cosx\\cosx=\pm\dfrac{1}{\sqrt{10}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=\dfrac{3}{\sqrt{10}}\\cosx=\dfrac{1}{\sqrt{10}}\end{matrix}\right.\\\left\{{}\begin{matrix}sinx=-\dfrac{3}{\sqrt{10}}\\cosx=-\dfrac{1}{\sqrt{10}}\end{matrix}\right.\end{matrix}\right.\)
Ta có: *nếu x = 45 ° thì sinx = cosx, suy ra: sinx – cosx = 0
*nếu x < 45 ° thì cosx = sin( 90 ° – x)
Vì x < 45 ° nên 90 ° – x > 45 ° , suy ra: sinx < sin( 90 ° – x)
Vậy sinx – cosx < 0
*nếu x > 45 ° thì cosx = sin( 90 ° – x)
Vì x > 45 ° nên 90 ° – x < 45 ° , suy ra: sinx > sin( 90 ° – x)
Vậy sinx – cosx > 0.