Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em làm cách này được không ạ?!
Với \(x\ne\pm y\), ta có: \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4\left(x^4-y^4\right)+8y^8}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^2\left(x^4+y^4\right)}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2-y^2\right)+4y^4}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2-y^2}=4\)
\(\Leftrightarrow\frac{y\left(x-y\right)+2y^2}{\left(x-y\right)\left(x+y\right)}=4\)
\(\Leftrightarrow\frac{y\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}=4\)
\(\Leftrightarrow\frac{y}{x-y}=4\)
\(\Leftrightarrow y=4x-4y\Leftrightarrow5y=4x\left(đpcm\right)\)
Giả sử : \(y=ax\)
Thay vào giả thiết : \(\frac{ax}{x+ax}+\frac{2\left(ax\right)^2}{x^2+\left(ax\right)^2}+\frac{4\left(ax\right)^4}{x^4+\left(ax\right)^4}+\frac{8\left(ax\right)^8}{x^8-\left(ax\right)^8}=4\)
\(\Leftrightarrow\frac{x.a}{x.\left(a+1\right)}+\frac{x^2.2a^2}{x^2\left(1+a^2\right)}+\frac{x^4.4a^4}{x^4\left(1+a^4\right)}+\frac{x^8.8a^8}{x^8\left(1-a^8\right)}=4\)
\(\Leftrightarrow\frac{a}{a+1}+\frac{2a^2}{a^2+1}+\frac{4a^4}{a^4+1}+\frac{8a^8}{1-a^8}=4\)
Tới đây bạn giải ra , tìm a rồi thay vào y = ax là ra :)
Ta có: \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\forall x\ne\pm y\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4\left(x^4-y^4\right)+8y^8}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^2}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2-y^2\right)+4y^4}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2-y^2}=4\)
\(\Leftrightarrow\frac{y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=4\)
\(\Leftrightarrow\frac{y}{x-y}=4\)
\(\Leftrightarrow y=4x-4y\)
\(\Leftrightarrow5y=4x\left(đpcm\right)\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như trên khó theo dõi quá.