\(\frac{a}{m}\) ,y = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

                                                                     Bài giải

Thay \(x=\frac{a}{m}\text{ ; }y=\frac{b}{m}\text{ ; }z=\frac{a+b}{m}\) vào  \(P\) ta được : 

\(P=\frac{\frac{a}{m}+\frac{b}{m}}{\frac{b}{m}+\frac{a+b}{m}}=\frac{\frac{a+m}{m}}{\frac{a+2b}{m}}=\frac{a+b}{m}\cdot\frac{m}{a+2b}=\frac{a+b}{a+2b}\)

Áp dụng : 

\(\frac{\frac{1}{4}+\frac{1}{2}}{\frac{1}{2}+\frac{3}{4}}=\frac{\frac{3}{4}}{\frac{5}{4}}=\frac{3}{4}\cdot\frac{4}{5}=\frac{3}{5}\)

31 tháng 8 2020

Cảm ơn bạn!

Ai giúp mình hai câu cuối với!

29 tháng 8 2020

Mình thiếu nhé. Câu b chứng minh p(ở câu a) < t

a, \(p=\frac{x+y}{y+z}=\frac{\frac{a}{m}+\frac{b}{m}}{\frac{b}{m}+\frac{a+b}{m}}=\frac{\frac{a+b}{m}}{\frac{a+b^2}{m}}=\frac{a+b}{a+b^2}\)

\(\frac{\frac{1}{4}+\frac{1}{2}}{\frac{1}{2}+\frac{3}{4}}=\frac{\frac{1}{4}+\frac{2}{4}}{\frac{2}{4}+\frac{1+2}{4}}=\frac{1+2}{1+2^2}=\frac{3}{5}\)

Hok tốt !!!!!!!!!

18 tháng 2 2017

a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))

=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)

Từ : x-y-z = 0

=>x – z = y; y – x = – z và y + z = x

Suy ra: B =\(\frac{y}{x}\).\(\frac{-z}{y}\).\(\frac{x}{z}\)= -1(x,y,z\(\ne\)0)
b)Ta có : \(\frac{3x-2y}{4}\)=\(\frac{2z-4x}{3}\)=\(\frac{4y-3z}{2}\)
=>\(\frac{4\left(3x-2y\right)}{16}\)=\(\frac{3\left(2x-4z\right)}{9}\)=\(\frac{2\left(4y-3z\right)}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có
\(\frac{4\left(3x-2y\right)}{16}\)=\(\frac{3\left(2x-4z\right)}{9}\)=\(\frac{2\left(4y-3z\right)}{4}\) =\(\frac{4\left(3x-2y\right)+3\left(2x-4z\right)+2\left(4y-3z\right)}{16+9+4}\)
=0
=>\(\frac{4\left(3x-2y\right)}{16}\)=0 =>3x = 2y=> \(\frac{x}{2}\)=\(\frac{y}{3}\)(1)
\(\frac{3\left(2x-4z\right)}{9}\)=0 =>2z = 4x=>\(\frac{x}{2}\)=\(\frac{z}{4}\)(2)
Từ(1)và (2)=>Đpcm
c)Ta có:\(\frac{5-x}{x-2}\)=\(\frac{3-\left(x-2\right)}{x-2}\)=\(\frac{3}{x-2}\)-1(x\(\ne\)2)
M nhỏ nhất\(\Leftrightarrow\)\(\frac{3}{x-2}\)nhỏ nhất \(\Leftrightarrow\)x-2 lớn nhất và x-2 <0
18 tháng 2 2017

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)

\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)

\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)

20 tháng 1 2017

a) Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=k\)

\(\Rightarrow k=\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}=\frac{x+2y+z}{9a}\)

\(\Rightarrow\frac{a}{x+2y+z}=\frac{k}{9}\)

Tương tự :\(\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}=\frac{k}{9}\)

Vậy ..........

20 tháng 1 2017

minh khong biet

15 tháng 8 2018

Ta có :  x < y mà  \(x=\frac{a}{m}\)và   \(y=\frac{b}{m}\)

\(\Rightarrow a< b\)

a<b \(\Rightarrow a+a< b+a\)

\(\text{Hay}\)\(2a< b+a\)

\(\Rightarrow\frac{a+b}{2m}>\frac{2a}{2m}\)

\(\Rightarrow z>x\)( 1)

a < b \(\Rightarrow a+b< b+b\)

Hay \(a+b< 2b\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow z< y\)(2)

Từ (1) và (2) suy ra : x < z < y (đpcm)

15 tháng 8 2018

\(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)

\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)

\(\Rightarrow x< z< y\)

2 tháng 9 2016

Do x < y

=> a/m < b/m

=> a/m + a/m < a/m + b/m < b/m + b/m

=> 2a/m < a+b/m < 2b/m

=> a/m < a+b/m : 2 < b/m

=> a/m < a+b/m × 1/2 < b/m

=> a/m < a+b/2m < b/m

=> x < z < y

2 tháng 9 2016

=> am<bm

=>am+am<am+bm =>a.2m<m.(a+b)

=>a/m<a+b/2m         (1)

=>am+bm<bm+bm=>m(a+b)<b.2m

=>a+b/2m<b/m      (2)

tu (1) va (2)

=>a/m<a+b/m2<b/m