K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

bạn chọn vô biểu tượng fx cái thứ 2 dòng trên cùng từ trái qua đó

3 tháng 2 2016

mk k bít

2 tháng 1 2022

mik ko bik

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

Áp dụng BĐT AM-GM có:

\(\sqrt[3]{a+b}=\sqrt[3]{\frac{9}{4}}\sqrt[3]{(a+b).\frac{4}{9}}\leq \sqrt[3]{\frac{9}{4}}\left ( \frac{a+b+\frac{2}{3}+\frac{2}{3}}{3} \right )\)

Thực hiện tương tự với các biểu thức còn lại và cộng theo vế:

\(\Rightarrow A\leq \sqrt[3]{\frac{9}{4}}\left [ \frac{2(a+b+c)+4}{3} \right ]=2\sqrt[3]{\frac{9}{4}}\)

Vậy \(A_{\max}=2\sqrt[3]{\frac{9}{4}}\Leftrightarrow a=b=c=\frac{1}{3}\)

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

11 tháng 8 2016

nhầm đề ko  bạn

 

11 tháng 8 2016

Đề đúng mà bạn

1 tháng 1 2021

a, \(\dfrac{x}{\sqrt{x-1}}=\dfrac{x-1+1}{\sqrt{x-1}}=\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\)

Áp dụng BĐT AM-GM:

\(\dfrac{x}{\sqrt{x-1}}=\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\ge2\)

\(min=2\Leftrightarrow x=2\)

b, Áp dụng BĐT AM-GM:

\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}=4x\Rightarrow\dfrac{x^2}{y-1}\ge4x-4y+4\)

\(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge2\sqrt{\dfrac{y^2}{x-1}.4\left(x-1\right)}=4y\Rightarrow\dfrac{y^2}{x-1}\ge4y-4x+4\)

\(\Rightarrow\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\ge8\)

Đẳng thức xảy ra khi \(x=y=2\)