Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
Bài giải:
a) x2 + 4x + 4 = x2 + 2 . x . 2 + 22 = (x+ 2)2
Với x = 98: (98+ 2)2 =1002 = 10000
b) x3 + 3x2 + 3x + 1 = x3 + 3 . 1 . x2 + 3 . x .12+ 13 = (x + 1)3
Với x = 99: (99+ 1)3 = 1003 = 1000000
a). x2+4x+4=(x+2)2 ta thay x=98 vào hằng đẳng thức ta được:(98+2)2=1002=10000
b).x3+3x2+3x+1=(x+1)3 ta thay x=99 vào hđt ta được (99+1)3=1003=1000000
a ) \(x^2+4x+4\)
\(=x^2+2.x.2+2^2\)
\(=\left(x+2\right)^2\)
Khi \(x=98\) , ta có :
\(\left(98+2\right)^2\)
\(=100^2=10000\)
\(x^3+3x^2+3x+1\)
\(=x^3+3.x^2.1+3.x.1^2+1^3\)
\(=\left(x+1\right)^3\)
Khi \(x=99\) , ta có :
\(\left(99+1\right)^2\)
\(=100^2=10000\)
a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))
- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.
- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)
b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013
TA CÓ:
\(\frac{x^3-3x^2-3x-1}{x^2+x+1}=x^3-\frac{3\left(x^2+x+1\right)+2}{x^2+x+1}\)
\(=x^3-3+\frac{2}{x^2+x+1}\)
Để thỏa mãn đề bài => \(x^2+x+1\inƯ\left(2\right)\)
\(\Rightarrow x^2+x+1\in\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x^2+x\in\left\{0;-2;1;-3\right\}\)
\(\Rightarrow x\left(x+1\right)\in\left\{0;-2;1;-3\right\}\)
đến đây làm nốt
a) \(x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
\(A=x^3-3x^2+3x-1=\left(x-1\right)^3\)
Với x=2 thì: \(A=\left(2-1\right)^3=1\)
Với x=-2 thì \(A=\left(-2-1\right)^3=-3^3=-27\)
b) \(x^2+5x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)
\(B=x^3-3x^2+3x-1=\left(x-1\right)^3\)
Với x=1 thì \(A=\left(1-1\right)^3=0\)
Với x=-6 thì \(A=\left(-6-1\right)^3=-7^3=-343\)
\(\text{⇔(x−1)(x+6)=0}\)chỗ đó s ra thế bn ?? mìh chưa hiểu
https://olm.vn/hoi-dap/detail/225643523603.html vào link này tham khảo nha!!!
\(A=x^3+3x^2+3x\)
\(=x^3+3x^2+3x+1-1\)
\(=\left(x+1\right)^3-1\)
\(=\left(99+1\right)^3-1\)
\(=999999\)
\(A=x^3+3.x^2+3.x\)
\(=99^3+3.99^2+3.99\)
\(=99\left(99^2+3.99+3\right)\)
\(=99.111111\)
\(=999999\)
Chúc bạn học tốt!