
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick
1 . Phân tích đa thức thành nhân tử :
a) 4x\(^2\) + 1 - y\(^2\) - 4x
b) 2x\(^2\) - y\(^2\) + 2xy - xy
2. Tìm x :
a) \(\dfrac{1}{2}\)x\(^2\) - ( 2 - 4 ) . ( \(\dfrac{1}{2}\)x + 3 ) = 12
b) ( 4x - 1 )\(^2\) = 4
c) x . ( x - 2018 ) - 5x + 2018 . 5 = 0
3 . Tính giá trị biểu thức phụ thuộc vào biến :
B = ( x + 3 )\(^2\) - ( x + 3 ) . ( 2 - 4x ) + ( 2x - 1 ) #Hỏi cộng đồng OLM #Toán lớp 8

1) a) ta có : \(4x^2+1-y^2-4x\Leftrightarrow\left(2x-2\right)^2-y^2=\left(2x-2-y\right)\left(2x-2+y\right)\)
b) \(2x^2-y^2+2xy-xy\Leftrightarrow2x\left(x+y\right)-y\left(x+y\right)=\left(2x-y\right)\left(x+y\right)\)
bài 2 : a) ta có : \(\dfrac{1}{2}x^2+2\left(\dfrac{1}{2}x+3\right)-12=0\Leftrightarrow\dfrac{1}{2}x^2+x-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{13}\\x=-1-\sqrt{13}\end{matrix}\right.\) câu này mk nghỉ đề sai
b) ta có : \(\left(4x-1\right)^2=4\Leftrightarrow\left[{}\begin{matrix}4x-1=2\\4x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
c) ta có : \(x\left(x-2018\right)-5x+2018.5=0\Leftrightarrow x^2-2023x+10090=0\)
\(\Leftrightarrow\left(x-2018\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=5\end{matrix}\right.\)
bài 3 câu này bn chỉ cần nhân tung ra rồi rút gọn lại ra số là kết luận đc .
Bài 1:
\(a,4x^2+1-y^2-4x\)
\(=\left(4x^2-4x+1\right)-y^2\)
\(=\left(2x-1\right)^2-y^2\)
\(=\left(2x-1-y\right)\left(2x-1+y\right)\)
\(b,2x^2-y^2+2xy-xy\)
\(=\left(2x^2+2xy\right)-\left(y^2+xy\right)\)
\(=2x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-y\right)\)
Bài 2:
\(a,\dfrac{1}{2}x^2-\left(2-4\right).\left(\dfrac{1}{2}x+3\right)=12\)
\(\Leftrightarrow\dfrac{1}{2}x^2+2\left(\dfrac{1}{2}x+1\right)=12\)
\(\Leftrightarrow\dfrac{1}{2}x^2+x+2=12\)
\(\Leftrightarrow\dfrac{1}{2}x^2+x-10=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{2}}x\right)^2+2.\dfrac{1}{\sqrt{2}}x.\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\dfrac{1}{2}-10=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{2}}x+\dfrac{1}{\sqrt{2}}\right)^2-\dfrac{21}{2}=0\)
cái này vẫn có thể giải tiếp đc nhg mk thấy nếu bn hok lớp 8 thì chưa đã hok đến cái này nên mk nghĩ bn nên kt lại đề bài
\(b,\left(4x-1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=2\\4x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
\(c,x\left(x-2018\right)-5x+2018.5=0\)
\(\Leftrightarrow x\left(x-2018\right)-5\left(x-2018\right)=0\)
\(\Leftrightarrow\left(x-2018\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=5\end{matrix}\right.\)
Bài 3: bn ơi đề sai

a: \(A=x^2-4x+4-3=\left(x-2\right)^2-3>=-3\)
Dấu = xảy ra khi x=2
b: \(x^2+4x-10=x^2+4x+4-14=\left(x+2\right)^2-14>=-14\)
\(\Leftrightarrow\dfrac{4}{x^2+4x-10}< =-\dfrac{4}{14}\)
=>B>=2/7
Dấu = xảy ra khi x=-2
c: \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
=>2/x^2-x+1<=2:3/4=8/3
=>C>=-8/3
Dấu = xảy ra khi x=1/2
d: x^2-6x+12=(x-3)^2+3>=3
=>6/x^2-6x+12<=2
=>D>=-2
Dấu = xảy ra khi x=3

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)
\(\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=3\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}=3\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=3\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.\left(\dfrac{x+y+z}{xyz}\right)=3\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.1=3\) ( Do x+y+z=xyz )
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3-2=1\)
Vậy P = 1
Cho x, y là hai số thực khác 0 thỏa mãn \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\). Tìm giá tị lớn nhất và nhỏ nhất của biểu thức #Hỏi cộng đồng OLM #Toán lớp 8

Ta có
x 2 – 4 x y + 4 y 2 – 4 = x 2 – 2 . x . 2 y + 2 y 2 – 4 = x – 2 y 2 – 2 2 = x – 2 y – 2 x – 2 y + 2
Vậy m = 2.
Đáp án cần chọn là: B