\(\forall x\)

CMR đa thức f(x) có ít nhất 2 nghiệm

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

nếu đ tik cho mk nha

19 tháng 4 2018

ta có:(x-1).f(x)=(x+4).f(x+8) với mọi x. (*)

=>(*) đúng với giá trị x=1

Với x=1 thay vào (*) ta được (1-1).f(1)=(1+4).f(1+8)

=> 0.f(1)=5.f(9) =>f(9)=0

=> x=9 là 1 nghiệm của f(x)

Thay f(9)=0 vào (*) ta được 

(9-1).f(9)=(9+4).f(9+8) => 8.f(9)=13.f(17)

=>8.0=13.f(17) => 0=13.f(17)

=> f(17)=0

=>17 là 1 nghiệm của f(x)

vậy có ít nhất 1 nghiệm là số nguyên tố

tk mk nha bn 

*****Chúc bạn học giỏi*****

28 tháng 3 2017

Đặt g(x) = f(x) – f(-x), thế thì g(x) là đa thức dạng: g(x) = ax^3 + bx^2 + cx + d. Mặt khác, ta có:

g(1) = f(1) – f(-1) = 0

g(-1) = f(-1) – f(1) = 0

g(2) = f(2) – f(-2) = 0

g(-2) = f(-2) – f(2) = 0

Như vậy g(x) là đa thức bậc không quá ba mà có bốn nghiệm khác nhau 1, -1, 2, -2 điều này là không thể. Vậy phải có a = 0; b = 0; c = 0; d = 0.

Hay f(x) = f(-x) với \(\forall\)x.

27 tháng 8 2017

Bn chép mạng à

 từ pt x.f(x+1) = f( x+ 2) .f(x) 
xét x= 0 
pt có dạng 0= f(2).f(0) 
vậy hoặc f(2) = 0 hoặc f(0) = 0 
hay hoặc x= 2 hoặc x= 0 là nghiệm của pt f(x) = 0 
KL pt f(x) = 0 có ít nhất 2 nghiệm

31 tháng 3 2018

3 nghiệm bạn ơi

13 tháng 8 2015

a)x.f(x + 1) - ( x + 2). f( x) = 0 (1) 
*Với x=0 thì (1) 0.f(1) – 2.f(0) =0 f(0)=0. Vậy f(x) có một nghiệm là 0. 
*Với x=-2 thì (1) -2.f(-1) – 0.f(0) =0 f(-1)=0. Vậy f(x) có một nghiệm là -1. 
KL: Vậy f(x) có ít nhất hai nghiệm là 0 và -1(ĐPCM).

13 tháng 8 2015

Cách khác:

a)Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0. 
Nếu f(a) = 0 => a là nghiệm của f(x). 
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x. 
+ Thay x = 0 vào (1) ta được 
0.f(0 + 1) = (0 + 2).f(0) 
=> 0 = 2.f(0) 
=> f(0) = 0 
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2) 

+ Thay x = -2 vào (1) ta được: 
(-2).f(-2 + 1) = (-2 + 2).f(-2) 
=> (-2).f(-1) = 0.f(-2) 
=> (-2).f(-1) = 0 
=> f(-1) = 0 
=> x = -1 là 1 nghiệm của đa thức trên (3) 
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2