K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3

7 tháng 7 2020

a

Để \(\sqrt{\frac{-2\sqrt{6+\sqrt{23}}}{-x+5}}\) được xác định thì \(-x+5\ne0;-x+5< 0\)

\(\Leftrightarrow x\ne5;x>5\)

b

Để \(\sqrt{49x^2-34x+4}=\sqrt{\left(x-\frac{17+\sqrt{93}}{49}\right)\left(x-\frac{\sqrt{17}-\sqrt{93}}{49}\right)}\) đươc xác định thì:

\(49x^2-34x+4\ge0\Leftrightarrow\frac{\sqrt{17}-\sqrt{93}}{49}\le x\le\frac{\sqrt{19}+\sqrt{93}}{49}\)

21 tháng 12 2019

Xác định y không phải là hàm số của biến số x vì với mỗi giá trị của x ta xác định được hai giá trị khác nhau của y.

Vì dụ x = 3 thì y = 6 và y = 4.

5 tháng 6 2016

Ta phải có : \(\hept{\begin{cases}\sqrt{x-2}>0\\\sqrt{6-x}>0\end{cases}\Leftrightarrow2< x< 6}\)

5 tháng 6 2016

Ta phải có ; \(\hept{\begin{cases}\sqrt{x-2}>0\\\text{A B C H a b M Nhấp chuột và kéo để di chuyển Mình giải thế này nhé :)) Gọi M là trung điểm của BC => AM là đường trung tuyến của tam giác ABC => Nhấp chuột và kéo để di chuyển(vì tam giác ABC vuông) Áp dụng hệ thức về cạnh trong tam giác vuông, ta có ; Nhấp chuột và kéo để di chuyển(1) Mặt khác, ta cũng có ; Nhấp chuột và kéo để di chuyển(2) Từ (1) và (2) suy ra được : Nhấp chuột và kéo để di chuyển(Đpcm)}\sqrt{6-x}>0\end{cases}\Rightarrow2< x< 6}\)