Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab+4=\left(11...1.10+5\right)\left(11...1.10+9\right)+4=\left(\frac{10^n-1}{9}.10+5\right)\left(\frac{10^n-1}{9}.10+9\right)+4.\)
\(=\left(\frac{10^{n+1}-10+45}{9}\right)\left(\frac{10^{n+1}-10+81}{9}\right)+4=\frac{\left(10^{n+1}+35\right)\left(10^{n+1}+71\right)+324}{81}\)\
\(=\frac{10^{2n+2}+106.10^{n+1}+2809}{81}=\frac{\left(10^{n+1}+53\right)^2}{81}=\left(\frac{10^{n+1}+53}{9}\right)^2\)
\(10^{n+1}+53=100...053\)(n-1 chữ số 0) có tổng các c/s=1+0+5+3=9
\(\Rightarrow10^{n+1}+53⋮9\Rightarrow\frac{10^{n+1}+53}{9}\in Z\)
=>ab+4 là số chính phương
Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)
Ta có:
\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)
\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.
Ta có đpcm.
Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)
Ta có:
\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)
\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)
\(=(3t+3)^2\) là scp.
Ta có đpcm.
Câu 1:
Ta có:
\(n=11k+4\)
\(\Rightarrow n^2=\left(11k+4\right)^2=121k^2+88k+16\)
Vì \(121k^2\) chia hết cho 11; \(88k\) chia hết cho 11 và 16 chia cho 11 dư 5 nên
\(121k^2+88k+16\) chia cho 11 dư 5
Do đó \(n^2\) chia cho 11 dư 5.
Câu 2:
Ta có:
\(n=13k+7\)
\(\Rightarrow n^2-10=\left(13k+7\right)^2-10\)
\(=169k^2+182k+49-10=169k^2+182k+39\)
Vì \(169k^2;182k;39\) chia hết cho 13 nên \(169k^2+182k+39\) chia hết cho 13.
Do đó \(n^2-10\) chia hết cho 13.
Chúc bạn học tốt!!!
Câu 1:
Ta có: \(\left(2x+3\right)^2-4\left(x-3\right)\left(x+3\right)\)
\(=4x^2+12x+9-4\left(x^2-9\right)\)
\(=4x^2+12x+9-4x^2+36\)
\(=12x+45\)
Câu 2:
Ta có: \(\frac{x}{2x-1}+\frac{x-2}{x^2-1}-\frac{5}{2x+2}\)
\(=\frac{2x\left(x-1\right)\left(x+1\right)}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}+\frac{2\left(x-2\right)\left(2x-1\right)}{2\left(x+1\right)\left(x-1\right)\left(2x-1\right)}-\frac{5\left(x-1\right)\left(2x-1\right)}{2\left(x+1\right)\left(x-1\right)\left(2x-1\right)}\)
\(=\frac{2x\left(x^2-1\right)+2\left(2x^2-5x+2\right)-5\left(2x^2-3x+1\right)}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x^3-2x+4x^2-10x+4-10x^2+15x-5}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x^3-6x^2+3x-1}{2\left(2x-1\right)\left(x-1\right)\left(x+1\right)}\)
Câu 3:
Gọi số táo và số lê bạn An mua lần lượt là a,b(điều kiện: 0<a,b<41)
Vì số táo nhiều hơn số lê nên a>b
Theo đề bài, ta có:
\(a^2-b^2=41\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=41\)
\(\Leftrightarrow a-b;a+b\inƯ\left(41\right)\)
\(\Leftrightarrow a-b;a+b\in\left\{1;41;-1;-41\right\}\)
mà a>0 và b>0 và a>b
nên \(\left[{}\begin{matrix}\left\{{}\begin{matrix}a-b=1\\a+b=41\end{matrix}\right.\\\left\{{}\begin{matrix}a-b=41\\a+b=1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1+b\\1+b+b=41\end{matrix}\right.\\\left\{{}\begin{matrix}a=41+b\\41+b+b=1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1+b\\2b=40\end{matrix}\right.\\\left\{{}\begin{matrix}a=41+b\\2b=-40\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1+20=21\left(nhận\right)\\b=20\left(nhận\right)\end{matrix}\right.\\\left\{{}\begin{matrix}a=41+\left(-20\right)=21\\b=-20\left(loại\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=21\\b=20\end{matrix}\right.\)
Vậy: Bạn An mua 21 quả táo và 20 quả lê
Câu 4:
Diện tích đám đất đó là:
\(S=800\cdot500=400000\left(m^2\right)=0.4km^2\)
Vậy: Diện tích đám đất tính theo m2 là 400000m2
Diện tích đám đất tính theo km2 là 0.4km2
Câu 5:
Vì diện tích sân là 7035m2 nên ta có phương trình:
\(\left(2x+19\right)\left(2x-19\right)=7035\)
\(\Leftrightarrow4x^2-361=7035\)
\(\Leftrightarrow4x^2=7396\)
\(\Leftrightarrow x^2=1849\)
hay \(x=\sqrt{1849}=43m\)(thỏa mãn)
Chiều dài của sân là:
\(2\cdot43+19=86+19=105\left(m\right)\)
\(xy+4=\left(111....15\right)\left(111....19\right)\left(ncs\right)+4=\left(111....17-2\right)\left(111....17+2\right)+4\)
\(=111....117^2-4+4=11..17^2\Rightarrow dpcm\)