Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có VT = \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{zx}}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xyz}\left(x+y+z\right)}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|=VP\) (Vì x + y + z = 0)
+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:
\(x+x+y+z\ge4\sqrt[4]{x.x.y.z}\)
=> 2x + y + z \(\ge4\sqrt[4]{x.x.y.z}\) (1)
Với 4 số dương \(\frac{1}{x};\frac{1}{x};\frac{1}{y};\frac{1}{z}\) ta có: \(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge4.\sqrt[4]{\frac{1}{x}.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}\) (2)
Từ (1)(2) => \(\left(2x+y+z\right)\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4.\sqrt[4]{x.x.y.z}4.\sqrt[4]{\frac{1}{x}.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=16\)
=> \(\frac{1}{2x+y+z}\le\frac{1}{16}.\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\) (*)
Tương tự, ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\) (**)
\(\frac{1}{x+y+2z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\) (***)
Từ (*)(**)(***) => Vế trái \(\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{4}.4=1\)
=> đpcm
+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:
x+x+y+z≥44√x.x.y.z
=> 2x + y + z ≥44√x.x.y.z (1)
Với 4 số dương 1x ;1x ;1y ;1z ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z (2)
Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16
=> 12x+y+z ≤116 .(2x +1y +1z ) (*)
Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z ) (**)
1x+y+2z ≤116 .(1x +1y +2z ) (***)
Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1
=> đpcm
Trước hết, ta đi chứng minh một bổ đề sau: Nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\). Thật vậy, ta phân tích
\(P=a^3+b^3+c^3-3abc\)
\(P=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(P=\left(a+b+c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(P=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Hiển nhiên nếu \(a+b+c=0\) thì \(P=0\) hay \(a^3+b^3+c^3=3abc\), bổ đề được chứng minh.
Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) nên áp dụng bổ đề, ta được \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\).
Vì vậy \(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\) \(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\) \(=xyz.\dfrac{3}{xyz}=3\). Ta có đpcm
Áp dụng công thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y>0\right)\)
Ta có \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right)\)
\(\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)
=> \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)
Tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\end{cases}}\)
(1)(2)(3) => \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
=> \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)
Áp dụng bất đẳng thức : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( với x , y > 0 )
Ta có : \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right);\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)
Suy ra :
\(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)
Tường tự ta có :
\(\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\)
\(\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\)
Từ (1) , (2) và (3)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Dấu " = " xảy ra khi \(x=y=z=\frac{3}{4}\)
Chúc bạn học tốt !!!
Lời giải:
$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$
$=(2x-1)(2y-1)(2z-1)+1$
Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$
$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$
$\Rightarrow 2\text{VT}\leq 2$
$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.
Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.
\(\sqrt{z}=\sqrt{x}+\sqrt{y}\Rightarrow z=x+y+2\sqrt{xy}\Rightarrow x+y-z=-2\sqrt{xy}\)
\(\sqrt{y}=\sqrt{z}-\sqrt{x}\Rightarrow y=x+z-2\sqrt{zx}\Rightarrow z+x-y=2\sqrt{zx}\)
\(\sqrt{x}=\sqrt{z}-\sqrt{y}\Rightarrow x=y+z-2\sqrt{yz}\Rightarrow y+z-x=2\sqrt{yz}\)
\(\frac{1}{y+z-x}+\frac{1}{z+x-y}+\frac{1}{x+y-z}=\frac{1}{2}\left(\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{yz}}-\frac{1}{\sqrt{xy}}\right)\)
\(=\frac{1}{2}.\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\sqrt{xyz}}=0\)
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2.\dfrac{x+y+z}{xyz}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\text{|}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\text{|}\)
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)-2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{z}{xyz}+\dfrac{y}{xyz}+\dfrac{x}{xyz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)
Đ ặ t x = a 3 y = b 3 z = c 3 , v ì x , y , z > 0 x y z = 1 = > a , b , c > 0 a b c = 1
Ta có: x + y + 1 = a 3 + b 3 + 1 = ( a + b ) ( a 2 − a b + b 2 ) + 1 ≥ ( a + b ) a b + 1 = a b ( a + b + c ) = a + b + c c
Do đó: 1 x + y + 1 ≤ c a + b + c
Tương tự ta có: 1 y + z + 1 ≤ a a + b + c 1 z + x + 1 ≤ b a + b + c
Cộng 3 bất đẳng thức trên theo vế ta có đpcm