Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy cho 2 số không âm:
\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};x+z\ge2\sqrt{xz}\);
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}}\Leftrightarrow x=y=z\left(đpcm\right)\))
Áp dụng BĐT AM - GM ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\).
Đẳng thức xảy ra khi và chỉ khi x = y = z.
Vậy x = y = z.
Này TRẦN MINH HOÀNG, dòng đầu bn viết bất đẳng thức tam giác gì đó
x+y>=2 căn xy
y+z>=2 căn yz
x+z>=2 căn xz
=>(x+y)(y+z)(x+z)>=8xyz
Áp dụng BĐT Cô - si : a + b ≥ 2\(\sqrt{ab}\)
=> x + y ≥ \(2\sqrt{xy}\) ( 1 )
y + z ≥ \(2\sqrt{yz}\) ( 2 )
x + z ≥ 2\(\sqrt{xz}\) ( 3 )
Nhân tưng vế của ( 1 , 2 , 3) , ta được :
( x + y )( y + z)( z + x ) ≥ \(2\sqrt{xy}\) . \(2\sqrt{yz}\) .2 \(\sqrt{xz}\)
<=> ( x + y )( y + z)( z + x ) ≥ 8 xyz
ta có (x+y)2 ≥ 4xy
(y+z)2≥ 4yz
(x+z)2≥4xz
nhân từng vế của bđt trên ta được
(x+y)2 (y+z)2 (x+z)2 ≥ 64 x2y2z2
=> [(x+y)(y+z)(x+z)]2≥ (8xyz)2
=>(x+y)(y+z)(x+z)≥ 8xyz(đpcm)
vì x,y,z>0 nên áp dụng bđt côsi ta có
x+y >= 2\(\sqrt{xy}\)
y+z >= 2\(\sqrt{yz}\)
z+x >= 2\(\sqrt{xz}\)
\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)
>= 8xyz
Dấu = xảy ra <=> x=y=z
Áp dụng BĐT AM-GM cho các số dương ta được:
\(x+y\ge2\sqrt{xy}\left(1\right)\)
\(y+z\ge2\sqrt{yz}\left(2\right)\)
\(x+z\ge2\sqrt{xz}\left(3\right)\)
Nhân lần lượt từng vế của ba bđt 1;2;3 ta được:
\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{xz}.2\sqrt{yz}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)
Áp dụng bất đẳng thức Cô-si ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)
\(=8\sqrt{x^2y^2z^2}=8xyz\)
Dấu = khi x=y=z