Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này bạn cho điều kiện sai rồi \(x\ge0;x\ne-1\) mới đúng nha
ta có : \(x^2\ge0\forall x\) và \(x+1\ge1>0\forall x\) \(\Leftrightarrow y=\dfrac{x^2}{x+1}\ge0\forall x\)
\(\Rightarrow\) Min của \(y=\dfrac{x^2}{x+1}\) là 0 khi \(x^2=0\Leftrightarrow x=0\)
vậy Min của \(y=\dfrac{x^2}{x+1}\) là 0 khi \(x=0\)
ta có
\(\sum x^2+xyz=4\)
\(4+2z\ge2xy+2z+z^2+xyz=\left(2+z\right)\left(z+xy\right)\)
\(2\ge z+xy\)
tương tự 2 mẫu còn lại ta có bđt sau
\(P\ge\sum\dfrac{x^4}{2}+\sum\dfrac{x^6}{6}\ge\sum\dfrac{x^4}{2}+\dfrac{\left(xyz\right)^2}{2}\left(Am-gm\right)\)
\(P\ge\dfrac{\left(\sum x^2+xyz\right)^2}{8}=2\)
@Vũ Tiền Châu @Akai Haruma @Lightning Farron @Phùng Khánh Linh @Nhã Doanh
Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5
\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)
Bài 1:
Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min
Nếu chuyển tìm max thì em tìm như sau:
Áp dụng BĐT Cauchy_Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)
Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự:
\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)
\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)
hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Em làm đại ạ ; có sai sót mong anh chị bỏ qua ạ !!
\(S=x+y+\dfrac{1}{x}+\dfrac{1}{y}\\ =\left(x+\dfrac{4}{9x}\right)+\left(y+\dfrac{4}{9y}\right)+\dfrac{5}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\\ \ge2.\sqrt{x.\dfrac{4}{9x}}+2.\sqrt{y.\dfrac{4}{9y}}+\dfrac{5}{9}.\dfrac{\left(1+1\right)^2}{x+y}\\ =\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{5}{9}.\dfrac{4}{x+y}\\ =\dfrac{8}{3}+\dfrac{20}{9\left(x+y\right)}\\ x+y\le\dfrac{4}{3}\\ \Leftrightarrow9\left(x+y\right)\le12\\ \Leftrightarrow\dfrac{20}{9\left(x+y\right)}\ge\dfrac{20}{12}=\dfrac{5}{3}\\ \Leftrightarrow S\ge\dfrac{8}{3}+\dfrac{5}{3}=\dfrac{13}{3}\)
/Dấu = xảy ra khi x=y=2/3
Lời giải:
Áp dụng BĐT AM-GM:
\(y=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\geq 3\sqrt[3]{\frac{1}{4}}\)
Do đó \(y_{\min}=3\sqrt[3]{\frac{1}{4}}\)
Dấu bằng xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Leftrightarrow x=\sqrt[3]{2}\)