\(\widehat{xoy}=65^{\text{ °}}.\) Trên tia Ox lấy điểm A. Kẻ tia Az sao cho  
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Cho \(\widehat{xoy}\)=65°. Trên tia Ox lấy điểm A. Kẻ tia Az sao cho \(\widehat{xAz}\)=65°. Trên tia Az lấy điểm B. Kẻ tia Bt cắt tia Oy tại C sao cho \(\widehat{CBz}\)=115°. Kẻ AH⊥Oy;CK⊥Az a) Chứng minh Az//Oy b) Chứng minh AH//CK c) Tính \(\widehat{OAH}\) 2) Cho ΔABC có \(\widehat{A}\)=40°;\(\widehat{B}\)=100°. Từ B kẻ đường thẳng vuông góc với AC tại H. a) Tính \(\widehat{C}\) b) Chứng tỏ rằng BH là tia phân giác...
Đọc tiếp

1) Cho \(\widehat{xoy}\)=65°. Trên tia Ox lấy điểm A. Kẻ tia Az sao cho \(\widehat{xAz}\)=65°. Trên tia Az lấy điểm B. Kẻ tia Bt cắt tia Oy tại C sao cho \(\widehat{CBz}\)=115°. Kẻ AH⊥Oy;CK⊥Az

a) Chứng minh Az//Oy

b) Chứng minh AH//CK

c) Tính \(\widehat{OAH}\)

2) Cho ΔABC có \(\widehat{A}\)=40°;\(\widehat{B}\)=100°. Từ B kẻ đường thẳng vuông góc với AC tại H.

a) Tính \(\widehat{C}\)

b) Chứng tỏ rằng BH là tia phân giác của \(\widehat{ABC}\)

c) Trên nửa mặt phẳng không chứa điểm B và có bờ là đường thẳng AC, vẽ các tia Ax và Cy cùng song song với BH. Tính \(\widehat{xAB}+\widehat{ABC}+\widehat{BCy}\)

3) Cho \(\Delta ABC\) có AB=AC. Gọi H là trung điểm của cạnh BC. Chứng minh:

a) \(\widehat{B}=\widehat{C}\)

b) AH là tia phân giác của \(\widehat{BAC}\)

c) AH là trung trực của BC

d) Cho \(\widehat{C}=50^{\text{ °}}.\) Tính \(\widehat{BAC}\)

4
19 tháng 11 2019

Mình làm nốt câu d) bài 3 nhé.

d) Vì \(\widehat{B}=\widehat{C}\left(cmt\right)\)

\(\widehat{C}=50^0\left(gt\right)\)

=> \(\widehat{B}=\widehat{C}=50^0.\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).

=> \(\widehat{A}+50^0+50^0=180^0\)

=> \(\widehat{A}+100^0=180^0\)

=> \(\widehat{A}=180^0-100^0\)

=> \(\widehat{A}=80^0.\)

Hay \(\widehat{BAC}=80^0.\)

Vậy \(\widehat{BAC}=80^0.\)

Chúc bạn học tốt!

19 tháng 11 2019

Hình bạn tự vẽ nha!

Bài 3:

a) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại \(A.\)

=> \(\widehat{B}=\widehat{C}\) (tính chất tam giác cân).

b) Xét 2 \(\Delta\) \(ABH\)\(ACH\) có:

\(AB=AC\left(gt\right)\)

\(BH=CH\) (vì H là trung điểm của \(BC\))

Cạnh AH chung

=> \(\Delta ABH=\Delta ACH\left(c-c-c\right).\)

=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

=> \(AH\) là tia phân giác của \(\widehat{BAC}.\)

c) Vì \(\Delta ABC\) cân tại \(A\left(cmt\right)\)

\(AH\) là đường phân giác (cmt).

=> \(AH\) đồng thời là đường trung trực của \(\Delta ABC.\)

=> \(AH\) là đường trung trực của \(BC.\)

Chúc bạn học tốt!

giúp ik mn

26 tháng 8 2017

Xl vì mình ko vẽ hình cho bạn đc

a) Kẻ Ox' là tia đối của Ox

Ta có: \(\widehat{x'Oy}\)\(\widehat{yOx}\)= 180*

Mà \(\widehat{yOx}\)= 150*

=> \(\widehat{x'Oy}\)= 180* -150 * = 30*

Ta lại có : \(\widehat{x'Oy}\)\(\widehat{zAO}\)(30*) mà hai góc này lại là 2 góc so le trong 

Suy ra Oy // Az mà Az' lại là tia đối của Az => Oy // zz'

b) Vì Oy // Az (hay zz') chứng minh trên 

Suy ra \(\widehat{yOA}\)\(\widehat{zAx}\)

Mà OM là pg của \(\widehat{yOA}\)và On là pg của \(\widehat{zAx}\)

=> \(\widehat{MOA}\)\(\widehat{NAx}\)( 2 góc so le trong)

Từ đó ta biết đc OM // AN (Đpcm)

26 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

a: Vì góc xAT=góc xOy

mà hai góc đồng vị

nên Oy//AT

b: Vì Oy//AT

và Oy vuông góc với AH

nên AT vuông góc với AH

c: góc OAH=90-70=20 độ

a: Vì góc OAz+góc xOy=180 độ

nên zz'//Oy

b: góc OAN=150/2=75 độ

góc MOA=150/2=75 độ

Do đó: góc OAN=góc MOA

=>AN//OM