\(\widehat{xOy}\) . Trên tia Ox lấy M;N. Trên tia Oy lấy P;Q sao cho OM = OP; PQ = MN...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOPN và ΔOMQ có

OP=OM

góc PON chung

ON=OQ

Do đó: ΔOPN=ΔOMQ

b: Xét ΔMPN và ΔPMQ có

MP chung

PN=MQ

MN=PQ

Do đó: ΔMPN=ΔPMQ

c: Xét ΔIMN và ΔIPQ có

\(\widehat{IMN}=\widehat{IPQ}\)

MN=PQ

\(\widehat{INM}=\widehat{IQP}\)

Do đó: ΔIMN=ΔIPQ

1 tháng 12 2021

a) ∆OAD và ∆OCB có: OA= OC(gt)

ˆAODAOD^=ˆCOBCOB^(=ˆAA^)

OD=OB(gt)

Nên ∆OAD=∆OCB(c.g.c)

suy ra AD=BC.

b) ∆OAD=∆OCB(cmt)

Suy ra: ˆDD^= ˆBB^

 ˆA1A1^=ˆC1C1^ => ˆA2A2^=ˆC2C2^

Do đó ∆AOE = ∆OCE(c .c.c)

suy ra: ˆOAEOAE^=ˆCOECOE^

vậy OE là tia phân giác của xOy.

b) ∆AEB= ∆CED(câu b) => EA=EC.

∆OAE và ∆OCE có: OA=OC(gt)

EA=EC(cmt)

OE là cạnh chung.

Nên ∆OAE=∆(OCE)(c .c.c)

suy ra: ˆAOEAOE^=ˆCOECOE^

vậy OE là tia phân giác của góc xOy.

10 tháng 12 2017

Tham khảo nha.

Câu hỏi của nguyen van duy - Toán lớp 7 - Học toán với OnlineMath

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0