Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x A y B D C E
cm:a) Ta có: \(\frac{AD}{BD}=\frac{11}{8}\)<=> \(\frac{AB+BD}{BD}=\frac{11}{8}\)
<=> \(\frac{AB}{BD}=\frac{11}{8}-1=\frac{3}{8}\)
\(AC=\frac{3}{8}CE\) <=> \(\frac{AC}{CE}=\frac{3}{8}\)
=> \(\frac{AB}{BD}=\frac{AC}{CE}=\frac{3}{8}\)
Theo định lí Ta - lét đảo => BC // DE
b) Do BC // DE, theo định lí Ta - lét, ta có:
\(\frac{AB}{AD}=\frac{BC}{DE}\) <=> \(DE=BC:\left(\frac{AD-BD}{AD}\right)=6:\left(1-\frac{8}{11}\right)=22\left(cm\right)\)
Vậy ....
Hình bạn tự vẽ nhé!
a) Ta có: AB = AD - BD (B \(\in\) AD)
\(\Leftrightarrow\) AB = 11 - 8
\(\Leftrightarrow\) AB = 3 (cm).
Lại có: \(\frac{AC}{CE}=\frac{3}{8}\)
và \(\frac{AB}{BD}=\frac{3}{8}\)
Suy ra \(\frac{AC}{CE}=\frac{AB}{BD}\)
mà theo định lí đảo Talet, suy ra:
BC // DE (đpcm).
b) Tam giác ADE có: BC // DE (chứng minh trên), theo hệ quả định lí Talet:
\(\frac{AC}{CE}=\frac{BC}{DE}\Leftrightarrow\frac{3}{8}=\frac{3}{DE}\)
\(\Leftrightarrow DE=\frac{8.3}{3}=8\left(cm\right)\)
Vậy DE = 8 cm.
A B C D E I
Đặt \(\frac{EI}{ID}=k\).
Ta có \(S_{DIA}+S_{IAE}=S_{DAC}\left(=\frac{1}{4}S_{DEC}\right)\Rightarrow\left(1+k\right)S_{DIA}=S_{DAC}\)
Lại có : \(\frac{S_{DIC}}{S_{DBC}}=\frac{S_{DEC}}{k+1}:\frac{S_{DEC}}{2}=\frac{2}{k+1}\)
\(\Rightarrow\frac{\left(k+1+1\right)S_{DIA}}{2\left(k+1\right)S_{DIA}}=\frac{2}{k+1}\Rightarrow\frac{k+2}{2k+2}=\frac{2}{k+1}\Rightarrow k=2\)
Vậy thì EI = 2 ID hay \(DI=\frac{DE}{3}\)
a. cmr: BC//DE?
có: AD = 11/8 BD (GT)
=> AB = 3/8 AD
lại có: AC = 3/8 CE (GT)
mà B, D thuộc Ax (GT); C, E thuộc Ay (GT); xAy khác góc bẹt (GT)
=> BC//DE (ĐL Talet)
b. cho BC = 3cm. DE = ?
xét tam giác ADE có: BC//DE (CMT)
=> AC/AE=BC/DE=AB/AD (hệ quả ĐL Talet)
mà AC/AE=AB/AD=3/8 (GT, CMT)
=> BC/DE = 3/8
=> 8.BC=3.DE
=> 8.3=3.DE (vì BC=3 cm)
=>24=3.DE
=>DE= 8cm
Bài 2:
A B C D E F M
a, Ta có: \(AB//MD\left(ABCD-là-hình-thang\right)\)
\(\Rightarrow\frac{ME}{AE}=\frac{DM}{AB}=\frac{6}{7,5}=\frac{4}{5}\left(1\right)\)
Lại có: \(AB//MC\left(ABCD-là-hình-thang\right)\)
\(\Rightarrow\frac{FM}{BF}=\frac{MC}{AB}=\frac{6}{7,5}=\frac{4}{5}\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow\frac{ME}{AE}=\frac{FM}{BF}\Rightarrow EF//AB\left(Định-lí-đảo-talet\right)\)
b, Vì: \(\frac{EM}{EA}=\frac{4}{5}\Rightarrow\frac{ME}{AE+EM}=\frac{4}{5+4}=\frac{4}{9}\)
\(\Rightarrow\frac{ME}{MA}=\frac{4}{9}\)
Lại có: \(EF//AB\left(cmt\right)\)
Xét \(\Delta MAB\) có:
\(\frac{FE}{AB}=\frac{ME}{MA}\) hay \(\frac{EF}{7,5}=\frac{4}{9}\Rightarrow EF=\frac{4.7,5}{9}\approx3,3\left(cm\right)\)
Vậy .................
x A y B D C E
sai đề...với bài này dễ quá