Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
a) Vì góc AOB và AOD là 2 góc kề bù nên OB và OD là 2 tia đối nhau (1)
Vì góc AOB và BOC là 2 góc kề bù nên OA và OC là 2 tia đối nhau (2)
Từ (1) và (2) => BOC và AOD là 2 góc đối đỉnh (đpcm)
b) Gọi Om, On lần lượt là tia phân giác của AOD và BOC
\(\Rightarrow\begin{cases}AOm=mOD=\frac{AOD}{2}\\BOn=nOC=\frac{BOC}{2}\end{cases}\)
Mà AOD = BOC (đối đỉnh)
Do đó, \(AOm=mOD=BOn=nOC\)
Lại có: AOD + AOB = 180o (kề bù)
=> DOm + mOA + AOB = 180o
=> BOn + mOA + AOB = 180o
Mà BOn, mOA, AOb là các góc tương ứng kề nhau và không có điểm trong chung nên mOn = 180o hay Om và On là 2 tia đối nhau (đpcm)
ta co AOB+BOC=160(1)
Va AOB-BOC=100(2)
Cong (1) va (2) ta co
(AOB+BOC)+(AOB-BOC)=160+100
2AOB=260
AOB=130
Lai co AOB+BOC=160
Hay 130+BOC=160
BOC=30
Vì \(\widehat {AOB}\) và \(\widehat {BOC}\) là 2 góc kề nhau nên \(\widehat {AOB} + \widehat {BOC} = \widehat {AOC}\), mà \(\widehat {AOC} = 80^\circ \) nên \(\widehat {AOB} + \widehat {BOC} = 80^\circ \)
Vì \(\widehat {AOB} = \frac{1}{5}.\widehat {AOC}\) nên \(\widehat {AOB} = \frac{1}{5}.80^\circ = 16^\circ \)
Như vậy,
\(\begin{array}{l}16^\circ + \widehat {BOC} = 80^\circ \\ \Rightarrow \widehat {BOC} = 80^\circ - 16^\circ = 64^\circ \end{array}\)
Vậy \(\widehat {AOB} = 16^\circ ;\widehat {BOC} = 64^\circ \)
ta có: AOB+BOC=160O
→AOB+(AOC+1000)= 160O+1000=2600
HAY 2AOB=2600
→AOB=1300
BOC=300
B, vi tia OD thuoc goc AOB →OB nam giua OC VA OD
vi BOC=300 MA DOC= 900
→OB ko phai la tia phan giac cua BOC
c,