Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b) Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow\dfrac{d}{h}=\dfrac{d'}{h'}\Leftrightarrow\dfrac{d'}{h'}=\dfrac{20}{2}\Rightarrow d'=10h'\)
Áp dụng công thức thấu kính ta được:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\left(1\right)\)
Thay \(d'=10h'\) vào công thức trên ta có:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{10h'}\) hay \(\dfrac{1}{12}=\dfrac{1}{20}+\dfrac{1}{10h'}\Rightarrow h'=3\left(cm\right)\)
Vậy chiều cao của ảnh là 3cm
Khoảng cách từ màn đến thấu kính:
Ta có: \(d'=10h'=10.3=30cm\)
Ta có:
\(\dfrac{1}{d}+\dfrac{1}{d'}=\dfrac{1}{f}\)
\(\Rightarrow\dfrac{1}{16}+\dfrac{1}{d'}=\dfrac{1}{12}\)
\(\Rightarrow d'=48\)
Vậy khoảng cách từ ảnh đến thấu kính là 48cm
a)Ảnh thật, ngược chiều và nhỏ hơn vật.
b)Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{12}=\dfrac{1}{30}+\dfrac{1}{d'}\)
\(\Rightarrow d'=20cm\)
Chiều cao ảnh: \(\dfrac{h}{h'}=\dfrac{d}{d'}\)
\(\Rightarrow\dfrac{4}{h'}=\dfrac{30}{20}\Rightarrow h'=\dfrac{8}{3}cm\)
a)Ảnh ảo, cùng chiều và nhỏ hơn vật.
b)Khỏang cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{9}\)
\(\Rightarrow d'=\dfrac{36}{7}cm\)
Chiều cao ảnh: \(\dfrac{h}{h'}=\dfrac{d}{d'}\)
\(\Rightarrow\dfrac{3}{h'}=\dfrac{9}{\dfrac{36}{7}}\Rightarrow h'=\dfrac{12}{7}cm\)