Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
gọi M(x,y) là 1 điểm thuộc (C) , M'(x';y') thuộc ảnh của (C) là ảnh của M qua phép tịnh tiến theo vecto u
=> \(\hept{\begin{cases}x'-x=-2\\y'-y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=x'+2\\y=y'-4\end{cases}}\\ \)
thay x,y vào pt đường tròn (C)=> \(\left(x'+2\right)^2+\left(y'-4\right)^2-3\left(x'+2\right)+4\left(y'-4\right)-5=0\)
=> \(x'^2+4x'+4+y'^2-8y'+16-3x'-6+4y'-16-5=0\)
=>\(x'^2+x'+y'^2-4y'-7=0\)=>\(\left(x'+\frac{1}{2}\right)^2+\left(y'-2\right)^2=\frac{45}{4}\)
a) M(-1;1) đối xứng qua trục Oy ta được N(-1;1).
Gọi M'(x;y) là ảnh của N(-1;1) qua phép tịnh tiến theo vectơ v → = ( 2 ; 0 )
b) Gọi P(x;y) là ảnh của M(1;1) qua phép tịnh tiến theo v → = ( 2 ; 0 )
P(3;1) đối xứng qua trục Oy ta được M"(-3;1)
Đáp án B
Áp dụng biểu thức x ' = x + a y ' = y + b