Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{2019a^2}{2019c^2}=\frac{2020b^2}{2020d^2}=\)
\(=\frac{2019a^2+2020b^2}{2019c^2+2020d^2}=\frac{2019a^2-2020b^2}{2019c^2-2020d^2}\Rightarrow\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019c^2+2020d^2}{2019c^2-2020d^2}\)
Bạn ơi tham khảo thử cách này nhé !
Từ \(\frac{a}{b}=\frac{c}{d}\)( bài cho )
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó :
+) \(\frac{2019a^2+2020b^2}{2019a^2-2020b^2}=\frac{2019\left(bk\right)^2+2020b^2}{2019\left(bk\right)^2-2020b^2}=\frac{b^2\left(2019k^2+2020\right)}{b^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)
+) \(\frac{2019c^2+2020d^2}{2019c^2-2020d^2}=\frac{2019\left(dk\right)^2+2020d^2}{2019\left(dk\right)^2-2020d^2}=\frac{d^2\left(2019k^2+2020\right)}{d^2\left(2019k^2-2020\right)}=\frac{2019k^2+2020}{2019k^2-2020}\)
a) Áp dụng dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{2020b}{2020d}=\frac{a+2020b}{c+2020d}=\frac{a-2020b}{c-2020d}\)
=> \(\frac{a+2020b}{c+2020d}=\frac{a-2020b}{c-2020d}\)
=> \(\frac{a+2020b}{a-2020b}=\frac{c+2020d}{c-2020d}\)
b) \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=> \(\frac{a}{b}=\frac{a+c}{b+d}\Rightarrow\frac{a}{a+c}=\frac{b}{b+d}\)
=> \(\frac{2020a}{2020\left(a+c\right)}=\frac{b}{b+d}\)
=> \(\frac{2020\left(a+c\right)}{2020a}=\frac{b+d}{b}\)
c) \(2a+3c\left(b+d\right)=\left(a+c\right)\left(2b+3d\right)\)
Câu c sai đề.
Có:
\(ac=b^2\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{2019a+2020b}{2019b+2020c}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{2019a+2020b}{2019b+2020c}.\frac{2019a+2020b}{2019b+2020c}\)
\(\Rightarrow\frac{a}{c}=\frac{\left(2019a+2020b\right)^2}{\left(2019b+2020c\right)^2}\left(đpcm\right)\)
Chúc bạn học giỏi
Ko khó đâu bn ơi
Đặt a/b=c/d=k
=> a=bk và c=dk
Xong thay vào (a^2020-b^2020)/(a^2020+b^2020)=(b^2020.k^2020-b^2020)/(b^2020.k^2020+b^2020)
= (k^2020-1)/(k^2020+1)
Tiếp tục thay vào (c^2020-d^2020)/(c^2020+d^2020)=(d^2020.k^2020-d^2020)/(d^2020.k^2020+d^2020)
= (k^2020-1)/(k^2020+1)
=> đpcm.
Bài 1 :
Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)
\(\left|y-\frac{1}{2}\right|\ge0\forall y\)
\(\left(z-2\right)^2\ge0\forall z\)
\(\Rightarrow A\ge2018\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy........
Bài 2 :
Lý luận tương tự câu 1) ta có :
\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)
Thay x; y; z vào P ta có :
\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)
\(P=1-1+0\)
\(P=0\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2020a}{2020c}=\frac{2019b}{2019d}=\frac{2020a+2019b}{2020c+2019d}=\frac{2020a-2019b}{2020c-2019d}\)
\(\Rightarrow\frac{2020a+2019b}{2020a-2019b}=\frac{2020c+2019d}{2020c-2019d}\)