Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số sách ở ngăn trên là x, số sách ở ngăn dưới là y
Theo đề bài ta có: x+y=796 và x+74=y-74 (do bài toán nói khi chuyển 74 quyển sách từ ngăn dưới lên ngăn trên thì số sách ở 2 ngăn bằng nhau)
Từ 2 biểu thức trên ta có: x+y=796 và y=x+148
Suy ra: x+(x+148)=796 => 2x=648 => x=324. Suy ra y=472

\(I=\int e^xcosxdx\)
Đặt \(\left\{{}\begin{matrix}u=e^x\\dv=cosxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=e^xdx\\v=sinx\end{matrix}\right.\)
\(\Rightarrow I=e^xsinx-\int e^xsinxdx\)
Xét \(J=\int e^xsinxdx\Rightarrow\left\{{}\begin{matrix}u=e^x\\dv=sinxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=e^x\\v=-cosx\end{matrix}\right.\)
\(\Rightarrow J=-e^xcosx+\int e^xcosxdx=-e^xcosx+C\)
\(\Rightarrow I=e^xsinx-\left(-e^xcosx+I\right)=e^x\left(sinx+cosx\right)-I\)
\(\Rightarrow2I=e^x\left(sinx+cosx\right)\Rightarrow I=\left(\frac{1}{2}cosx+\frac{1}{2}sinx\right)e^x\)
Hoặc đơn giản là đạo hàm F(x) và đồng nhất hệ số với f(x) là xong

Đề bị lỗi công thức kìa bạn. Bạn xem và sửa lại đề dưới post.

Lời giải:
Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)
\(\Rightarrow 13^t=3^t+4^t+12^t\)
\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)
Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)
Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)
Đáp án B
cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)
1 cái giá sách