K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

A B C D E O F G

Ai có khả khả năng thì xin giải dùm ! 

3 tháng 9 2019

A B C D F E G O H

a) Từ tứ giác AEBG là hình bình hành suy ra \(\frac{DE}{BG}=\frac{DE}{AE}=\frac{DC}{AB}=\frac{FD}{FB}\) (1)

Đồng thời ^FDE = 1800 - ^ADE = 1800 - ^ACB = ^FBG (2)

Từ (1) và (2) suy ra \(\Delta\)FED ~ \(\Delta\)FGB (c.g.c). Do vậy FD.FG = FB.FE (đpcm).

b) Tương tự câu a ta có \(\Delta\)FEC ~ \(\Delta\)FGA (c.g.c), suy ra ^FGA = ^FEC = 1800 - ^FEA 

Vì ^FEA = ^FHA (Tính đối xứng) nên ^FGA = 1800 - ^FHA hay ^FGA + ^FHA = 1800

Vậy 4 điểm F,H,A,G cùng thuộc một đường tròn (đpcm).

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

a)

Ta có: \(\widehat{FDE}=\widehat{FCA}\) (góc nội tiếp cùng chắn cung AB)

\(\widehat{FCA}=\widehat{FBG}\) (so le trong với \(GB\parallel AC\) )

\(\Rightarrow \widehat{FDE}=\widehat{FBG}\)

Dễ thấy:

+ \(\triangle FAB\sim \triangle FCD(g.g)\Rightarrow \frac{FB}{FD}=\frac{AB}{CD}\)

+ \(\triangle AEB\sim \triangle DEC(g.g)\Rightarrow \frac{AB}{DC}=\frac{AE}{DE}=\frac{BG}{DE}\) ( \(GB=AE\) do $AEBG$ là hình bình hành)

\(\Rightarrow \frac{FB}{FD}=\frac{BG}{DE}\)

Xét tam giác $FDE$ và $FBG$ có:

\(\widehat{FDE}=\widehat{FBG}\) (cmt)

\(\frac{FD}{FB}=\frac{DE}{BG}\) (cmt)

\(\Rightarrow \triangle FDE\sim \triangle FBG(c.g.c)\)

\(\Rightarrow \frac{FD}{FE}=\frac{FB}{FG}\Rightarrow FD.FG=FE.FB\) (đpcm)

b)

Tương tự phần a, ta chứng minh được \(\triangle FCE\sim \triangle FAG(c.g.c)\)

\(\Rightarrow \widehat{FGA}=\widehat{FEC}=180^0-\widehat{FEA}(1)\)

Mặt khác:

Do $H,E$ đối xứng nhau qua $AD$ nên $AD$ là đường trung trực của $HE$. Suy ra $AE=AH$

$F\in AD$ nên $FE=FH$

\(\Rightarrow \triangle FHA=\triangle FEA(c.c.c)\)\(\Rightarrow \widehat{FEA}=\widehat{FHA}(2)\)

Từ \((1);(2)\Rightarrow \widehat{FGA}=180^0-\widehat{FHA}\)

Do đó $FHAG$ là tứ giác nội tiếp, hay 4 điểm $F,H,A,G$ cùng thuộc một đường tròn.

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Hình vẽ:

Góc với đường tròn

17 tháng 5 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng l: Đoạn thẳng [P, C] Đoạn thẳng m: Đoạn thẳng [M, A] Đoạn thẳng n: Đoạn thẳng [B, N] O = (1.97, 2.92) O = (1.97, 2.92) O = (1.97, 2.92) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm P: Giao điểm của c, j Điểm P: Giao điểm của c, j Điểm P: Giao điểm của c, j Điểm M: Giao điểm của c, k Điểm M: Giao điểm của c, k Điểm M: Giao điểm của c, k Điểm N: Giao điểm của c, i Điểm N: Giao điểm của c, i Điểm N: Giao điểm của c, i Điểm F: Giao điểm của j, f Điểm F: Giao điểm của j, f Điểm F: Giao điểm của j, f Điểm E: Giao điểm của i, g Điểm E: Giao điểm của i, g Điểm E: Giao điểm của i, g Điểm D: Giao điểm của k, h Điểm D: Giao điểm của k, h Điểm D: Giao điểm của k, h Điểm H: Giao điểm của l, m Điểm H: Giao điểm của l, m Điểm H: Giao điểm của l, m

a. Tứ giác CEHD có \(\widehat{HEC}=\widehat{HDC}=90^o\Rightarrow\) nó là tứ giác nội tiếp.

b. Tứ giác BFEC có \(\widehat{BEC}=\widehat{BFC}=90^o\Rightarrow\)nó là tứ giác nội tiếp. Vậy 4 điểm B, C, E, F cùng thuộc một đường tròn.

c. Ta thấy \(\Delta HAE\sim\Delta CAD\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AE}{AD}\Rightarrow AE.AC=AH.AD\)

Ta thấy \(\Delta CBE\sim\Delta CAD\left(g-g\right)\Rightarrow\frac{BC}{AC}=\frac{BE}{AD}\Rightarrow AD.BC=BE.AC\)

d. Ta thấy ngay \(\widehat{PCB}=\widehat{BAM}\) (Cùng phụ với góc ABC)

Mà \(\widehat{BAM}=\widehat{BCM}\) (Góc nội tiếp cùng chắn cung BM)

Vậy nên \(\widehat{PCB}=\widehat{BCM}\) hay CM là phân giác góc \(\widehat{PCB}\)

Lại có \(CM⊥HD\) nên HCM là tam giác cân. Vậy CB là trung trực của HM hay H, M đối xứng nhau qua BC.

e. Ta thấy BFHD là tứ giác nội tiếp nên \(\widehat{FDH}=\widehat{FBH}\) (Góc nội tiếp cùng chẵn cung FH)

 DHEC cùng là tứ giác nội tiếp nên \(\widehat{HDE}=\widehat{HCE}\) (Góc nội tiếp cùng chẵn cung HE)

Mà \(\widehat{FBH}=\widehat{HCE}\) ( Cùng phụ với góc \(\widehat{BAC}\) )

nên \(\widehat{FDH}=\widehat{HDE}\) hay DH là phân giác góc FDE.

Tương tự FH, EH cũng là phân giác góc DFE và DEF.

Vậy tâm đường tròn nội tiếp tam giác DEF chính là H.

HD
28 tháng 3 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

23 tháng 12 2021

mọi người có thể giúp mình được không ạ :))

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f...
Đọc tiếp

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

 

0
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và ea) chứng minh tứ giác bdmc, adhm...
Đọc tiếp

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

0