Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài này lạ quá. Hình vẽ là một tứ giác lõm.
Mình hướng dẫn ngắn gọn lời giải
a, Hai tam giác trên bằng nhau theo trường hợp cạnh - cạnh - cạnh
b, Có góc QMN = 80 độ
=> \(\widehat{PMQ}=\widehat{QMN}=\frac{360^o-80^o}{2}=140^o\)
CÓ: \(\widehat{QPM}=\widehat{MPN=\frac{60^o}{2}}=30^o\)
Xét tam giác PMQ biết góc PMQ =140 độ, góc PQM = 30 độ
=> Góc PQM = 10 độ
Mà góc PQM = góc PNM => Góc PNM = 10 độ
d, Xét tam giác QPM cân ở P ( PQ = PN)
=> Đường phân giác PM đồng thời là đường trung trực của đoạn thẳng NQ
e, Xét tam giác PQM có QN là đường trung trực của PM
=> Tam giác PQM cân ỏ Q => QP=PN=QM
Mà QM =MN
=> Tứ giác MNQP có 4 cạnh bằng nhau.

Bài 2 : a) Ta có : OM // AB => \(\frac{OM}{AB}=\frac{OD}{DB}\)( Hq talet) (1)
ON // AB => \(\frac{ON}{AB}=\frac{OC}{AC}\)(2)
AB // CD => \(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\)(3)
Từ (1), (2), (3) => OM/AB = ON/AB => OM = ON
b) Ta có : ON // CD => \(\frac{ON}{CD}=\frac{OB}{DB}\)(4)
Cộng từng vế (1) và (4) ta đc : \(\frac{OM}{AB}+\frac{ON}{CD}=\frac{OD}{DB}+\frac{OB}{DB}=\frac{OD+OB}{DB}=1\)
Suy ra : \(\frac{2OM}{AB}+\frac{2ON}{CD}=2\Rightarrow\frac{MN}{AB}+\frac{MN}{CD}=2\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c) Để mình tính đã nha

Bài 1)
Trên AD lấy E sao cho AE = AB
Xét ∆ACE và ∆ACB ta có :
AC chung
DAC = BAC ( AC là phân giác)
AB = AE (gt)
=> ∆ACE = ∆ACB (c.g.c)
=> CE = CB (1)
=> AEC = ABC = 110°
Mà AEC là góc ngoài trong ∆EDC
=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)
=> ECD = 110 - 70
=> EDC = 40°
Xét ∆ EDC :
DEC + EDC + ECD = 180 °
=> CED = 180 - 70 - 40
=> CED = 70°
=> CED = EDC = 70°
=> ∆EDC cân tại C
=> CE = CD (2)
Từ (1) và (2) :
=> CB = CD (dpcm)
b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°

a) Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(2)
Từ (1) và (2) suy ra MN//QP và MN=QP
Xét tứ giác MNPQ có
MN//QP(cmt)
MN=QP(cmt)
Do đó: MNPQ là hình bình hành
Xét ΔABD có
Q là trung điểm của AD
M là trung điểm của AB
Do đó: QM là đường trung bình của ΔABD
Suy ra: QM//DB và \(QM=\dfrac{DB}{2}\)
hay \(QM=\dfrac{AC}{2}\)(3)
Từ (2) và (3) suy ra QM=QP
Hình bình hành MNPQ có QM=QP(cmt)
nên MNPQ là hình thoi

Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên

a) từ I kẻ HI//AB//DC
=> GÓC HID= GÓC IDC ( SLT)
MÀ IDC=IDH => GÓC HID=GÓC IDH => TAM GIÁC HID CÂN TẠI H => HD=HI
TƯƠNG TỰ CHỨNG MINH TAM GIÁC HIA CÂN TẠI H => HI=HA
=> HA=HD => H LÀ TRUNG ĐIỂM AD
MÀ HI//AC//CD => I PHẢI LÀ TRUNG ĐIỂM BC
=> HI LÀ ĐTB CỦA HÌNH THANG
=> HI= (AB+CD)/2 (1)
MẶT KHÁC TRONG TAM GIÁC IAD:
GÓC ADI + GÓC IDA=1/2 GÓC A +1/2 GÓC D=1/2 (A+D)=1/2 180=90 ( ABCD LÀ HÌNH THANG => A+D=180)
=> TAM GIÁC ADI VUÔNG TẠI I. HI LÀ TRUNG TUYẾN => HI=AD/2 (2)
TỪ (1;2) => ĐPCM
B) GỌI PG GÓC A CẮT PG GÓC D TẠI I
TỪ I TA KẺ HI//AB//CD (H THUỘC AD)
=> .... ( ĐẾN ĐÂY C/M NHƯ TRÊN ĐỂ => H LÀ TĐ CỦA AD, TAM GIÁC ADI VUÔNG)
=> HI= AD/2.
TA CÓ: AD=AB+CD => HI=AB+CD/2 HAY HI= NỬA TỔNG 2 ĐÁY
H LÀ TRUNG ĐIỂM AD, HI//AB//CD. HI = NỬA TỔNG HAI ĐÁY => I PHẢI LÀ TRUNG ĐIỂM BC => AI CẮT DI TẠI I THUỘC BC