K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

A B C D E G F H

Xét tg ABC có

EF//AC  (gt) (1)

EA=EB (gt) 

=> FB=FC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

EA=EB (gt); FB=FC (cmt) => EF là đường trung bình của tg ABC

\(\Rightarrow EF=\dfrac{1}{2}AC\) (2)

Xét tg BCD chứng minh tương tự ta cũng có GC=GD

Xét tg ADC có

GF//AC (gt) (3)

GC=GD (cmt)

=> HA=HD (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

GC=GD (cmt); HA=HD (cmt) => GH là đường trung bình của tg ADC

\(\Rightarrow GH=\dfrac{1}{2}AC\) (4)

Từ (1) và (3) => EF//GH (cùng // với AC)

Từ (2) và (4) \(\Rightarrow EF=GH=\dfrac{1}{2}AC\)

=> EFGH là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Gọi O là giao của AC và BD

Ta có

FG//BD (gt); GH//AC (gt) \(\Rightarrow\widehat{HGF}=\widehat{DOC}\) (Góc có cạnh tương ứng vuông góc)

Để EFGH là Hình chữ nhật \(\Rightarrow\widehat{HGF}=90^o\)

\(\Rightarrow\widehat{HGF}=\widehat{DOC}=90^o\Rightarrow AC\perp BD\)

Để EFGH là hình chữ nhật => ABCD phải có 2 đường chéo vuông góc với nhau

 

9 tháng 6 2019

a.

Theo định lý Thales,ta có:

 \(OE//BC\) nên \(\frac{AE}{EB}=\frac{AO}{OC}\left(1\right)\)

\(OF//CD\) nên \(\frac{AF}{FD}=\frac{AO}{OC}\left(2\right)\)

Từ (1);(2) suy ra \(\frac{AE}{EB}=\frac{AF}{FD}\Rightarrow FE//BD\) theo ĐL Thales đảo.

b.

Theo định lý Thales,ta có:

\(OG//AB\) nên \(\frac{AO}{OC}=\frac{BG}{GC}\left(3\right)\)

\(OH//AD\) nên \(\frac{AO}{OC}=\frac{DH}{HC}\left(4\right)\)

Từ (3);(4) suy ra:\(\frac{BG}{GC}=\frac{DH}{HC}\Rightarrow BG\cdot CH=CG\cdot DH\left(đpcm\right)\)

28 tháng 1 2022

a) Xét tam giác ABC có: OE // BC (gt).

\(\Rightarrow\) \(\dfrac{AE}{AB}=\dfrac{AO}{AC}\left(Talet\right).\left(1\right)\)

Xét tam giác ACD có: OF // CD (gt).

\(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AO}{AC}\left(Talet\right).\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AE}{AB}.\)

Xét tam giác ABD có: \(\dfrac{AF}{AD}=\dfrac{AE}{AB}\left(cmt\right).\)

\(\Rightarrow\) EF // BD (định lý Talet đảo).