\(\widehat{A}+\widehat{B}=180^\circ\), AB<AD, AC là tia phân...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)

\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)

\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)

b,  \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)

Do đó: BI là tia p/g của \(\widehat{ABC}\)

Mà      CI là tia phân giác của \(\widehat{BCD}\)

          \(\widehat{ABC}+\widehat{BCD}=180^0\)

\(\Rightarrow\widehat{BIC}=90^0\)

c,  \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)

     \(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\)  (2)

Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)