\(AB^2+BC^2+CD^2+DA^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

ΔOAB vuông tại O

=>AB^2=AO^2+BO^2

ΔBOC vuông tại O

=>BC^2=BO^2+CO^2

ΔAOD vuông tại O

=>AD^2=AO^2+DO^2

ΔDOC vuông tại O

=>DC^2=OC^2+OD^2

AB^2+BC^2+CD^2+DA^2

=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2

=2(OA^2+OB^2+OC^2+OD^2)

2:

AB^2+CD^2

=OA^2+OB^2+OC^2+OD^2

=OA^2+OD^2+OB^2+OC^2

=AD^2+BC^2

vì tam giác OAB vuông tại O, theo pytago
OA^2 + OB^2 = AB^2
vì tam giác OAD vuông tại O, theo pytago
OA^2 + OD^2 = AD^2
vì tam giác ODC vuông tại O, theo pytago
OD^2 + OC^2 = DC^2
vì tam giác OBC vuông tại O, theo pytago
OB^2 + OC^2 = BC^2
cộng vế với vế của từng đẳng thức trên ta được
AB^2 + BC^2 + CD^2 + DA^2 = 2(OA^2 + OB^2 + OC^2 + OD^2)

vì tam giác OAB vuông tại O, theo pytago
OA^2 + OB^2 = AB^2
vì tam giác OAD vuông tại O, theo pytago
OA^2 + OD^2 = AD^2
vì tam giác ODC vuông tại O, theo pytago
OD^2 + OC^2 = DC^2
vì tam giác OBC vuông tại O, theo pytago
OB^2 + OC^2 = BC^2
cộng vế với vế của từng đẳng thức trên ta được
AB^2 + BC^2 + CD^2 + DA^2 = 2(OA^2 + OB^2 + OC^2 + OD^2)

22 tháng 8 2015

ta co

AB2=OA2+OB2 ( dinh ly pitago tam giac vuong AOB)

CD2=OD2+OC2 ( dinh ly pitogo tam giac vuong OCD)

-> AB2+CD2= OA2+OB2+OD2+OC2

ma OA2+OD2= AD2 ( dinh ly pitago tam giac vuong AOD)

      OB2+OC2=BC2 ( dinh ly pitago tam giac vuong OBC)

nen AB2+CD2=AD2+BC2

20 tháng 9 2021

a) Xét hai tam giác vuông ADB và DCA có

Góc ABD = DAC (cùng phụ BDC)

Nên hai tam giác trên đồng dạng (góc - góc)

b) Từ hai tam giác đồng dạng ở câu a ta có tỉ lệ:

AD/DC = AB/AD

Hay AD^2 = ABxDC = 4x9

Tính ra AD = 6cm

~ Chúc bn hok toots~ hình bn tự vẽ nhé ^^ ~!!

a: \(AB^2+BC^2+CD^2+DA^2\)

\(=OA^2+OB^2+OB^2+OC^2+OC^2+OD^2+OD^2+OA^2\)

\(=2\left(OA^2+OB^2+OC^2+OD^2\right)\)

b: \(AB^2+CD^2=OA^2+OB^2+OC^2+OD^2\)

\(=\left(OA^2+OD^2\right)+\left(OB^2+OC^2\right)\)

\(=AD^2+BC^2\)

10 tháng 9 2018

A B C D O a^2 b^2 M N  

(Hình ảnh chỉ mang tính chất minh họa)

a) Kẻ DM và CN vuông góc với AB

=> MN = CD (Theo cách vẽ)

=> DC - AB = MN - AB = MA + BN

=> DC - AB = MA + BN

Tam giác vuông MAD và NBC vuông lần lượt tại M,N

=> AM < AD và BN < BC (Cạnh góc vuông < Cạnh huyền)

=> DC - AB = MA + BN < AD + BC (ĐPCM