K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

a) + ∆ABO có  IM // AO

⇒ OB/IB = AO/IM   (1)

+ ∆IDP có AO // IP

⇒ ID/OD = IP/OA (2)

Nhân (1) với (2), ta được :

OB/IB . ID/OD = AO/IM . IP/OA ⇔ ID/IB . OB/OD = IP/IM (ĐPCM)

b) + ∆OBC có IN // OC

⇒ BO/IB = OC/IN (3)

+ ∆DQI có OC // IQ ⇒ ID/OD = IQ/OC (4)

Nhân (3) với (4) , ta được :

BO/IB . ID/OD = OC/IN . IQ/OC ⇔ ID/IB . OB/OD = IQ/IN (5) 

+ Theo câu a) , ta có : ID/IB . OB/OD = IP/IM (6)

Từ (5) và (6) suy ra :  IP/IM = IQ/IN  (dpcm)

22 tháng 3 2020

a) \(\Delta\)AOB có: MI //AO \(\Rightarrow\frac{MI}{AO}=\frac{IB}{OB}\)

\(\Delta\)DPI có: AO//IP

\(\Rightarrow\frac{OA}{IP}=\frac{OD}{ID}\)

\(\Rightarrow\frac{MI}{AO}\cdot\frac{AO}{IP}=\frac{IB}{BO}\cdot\frac{OD}{IID}\)

\(\Rightarrow\frac{MI}{IP}=\frac{IB}{ID}\cdot\frac{OD}{OB}\)

b) \(\Delta DIQ\)có: OC // IQ \(\Rightarrow\frac{OC}{IQ}=\frac{OD}{ID}\left(1\right)\)

\(\Delta BOC\)có: IN//OC \(\Rightarrow\frac{IN}{DC}=\frac{BI}{BD}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\hept{\begin{cases}\frac{OC}{IQ}=\frac{IN}{OC}=\frac{OD}{ID}\cdot\frac{BI}{BO}\\\frac{IN}{IQ}=\frac{IB}{ID}\cdot\frac{OD}{OB}\end{cases}}\)

Theo câu (a) có: \(\frac{IM}{IP}=\frac{IB}{ID}\cdot\frac{OD}{OB}\)

\(\Rightarrow\frac{IM}{IP}=\frac{IN}{IQ}\left(đpcm\right)\)

9 tháng 1 2019

Định lý Talet trong tam giác

4 tháng 2 2020

A B C D O M N P Q

a) ∆ABO có  IM // AO

\(\Rightarrow\frac{IB}{OB}=\frac{IM}{AO}\)  (1)

∆IDP có AO // IP

\(\Rightarrow\frac{OD}{ID}=\frac{OA}{IP}\)(2)

Nhân (1) với (2), ta được :

\(\frac{IB}{OB}.\frac{OD}{ID}=\frac{IM}{AO}.\frac{OA}{IP}\)

\(\Leftrightarrow\frac{IB}{ID}.\frac{OD}{OB}=\frac{IM}{IP}\)(ĐPCM)

b) ∆OBC có IN // OC

\(\Rightarrow\frac{IB}{BO}=\frac{IN}{OC}\)(3)

∆DQI có OC // IQ

\(\Rightarrow\frac{OD}{ID}=\frac{OC}{IQ}\)(4)

Nhân (3) với (4) , ta được :

\(\frac{IB}{BO}.\frac{OD}{ID}=\frac{IN}{OC}.\frac{OC}{IQ}\)

\(\Leftrightarrow\frac{IB}{ID}.\frac{OD}{OB}=\frac{IN}{IQ}\)(5) 

Theo câu a) , ta có :

\(\frac{IB}{ID}.\frac{OD}{OB}=\frac{IM}{IP}\)(6)

Từ (5) và (6) suy ra : \(\frac{IM}{IP}=\frac{IN}{IQ}\)(ĐPCM)

13 tháng 3 2019

hình mik ko vẽ đc xl!!!(GT+KL cx vậy)

a)Ta có AD//BN(NϵBC) => \(\frac{AM}{AB}=\frac{DM}{DN}\)(dl ta-lét) \(_1\)

Lại có BM//DC(MϵAB) => \(\frac{CB}{CN}=\frac{DM}{DN}\)(dl ta-lét) \(_2\)

từ 1 2 => \(\frac{AM}{AB}=\frac{DM}{DN}=\frac{CB}{CN}\left(đpcm\right)\)

b) ta có: AM//DC(MϵAB) => \(\frac{DI}{IM}=\frac{BC}{AM}=\frac{AB}{AM}\)(hệ quả ; BC=AB)

CMTT => \(\frac{IN}{DI}=\frac{NC}{DA}=\frac{NC}{CB}\)

\(\frac{NC}{CB}=\frac{AB}{AM}\left(cmt\right)\)

\(\Rightarrow\frac{IN}{ID}=\frac{ID}{IM}\Leftrightarrow ID^2=IN\cdot IM\left(đpcm\right)\)

24 tháng 12 2019

câu b sai rồi nhé, DC/AM chứ không phải là BC/AM và DC=AB( 2 cạnh đối của HBH)

2:

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC