K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

THam khảo nha : 

Xét bài toán: Cho tam giác ABC.ABC. Dựng hình vuông ABEFABEF và ACGHACGH phía ngoài tam giác. P,P, QQ theo thứ tự là tâm của hình vuông ABEFABEF và ACGH.ACGH. Lấy MMtrung điểm BC.BC. Chứng minh tam giác PQMPQM vuông cân tại M.M.

Lời giải: 

Dễ dàng chứng minh được MPMP và MQMQ theo thứ tự là đường trung bình của tam giác BCFBCF và BCH.BCH.

Suy ra MP∥CF ; MP=12CFMP∥CF ; MP=12CF và MQ∥BH ; MQ=12BH.   (1)MQ∥BH ; MQ=12BH.   (1)

Ta có: 

ˆBAH=ˆBAF+ˆFAH=90∘+ˆFAHBAH^=BAF^+FAH^=90∘+FAH^

ˆCAF=ˆCAH+ˆFAH=90∘+ˆFAHCAF^=CAH^+FAH^=90∘+FAH^

Do đó ˆBAH=ˆCAF.BAH^=CAF^.

Từ đó chứng minh được △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c)

⇒ˆFCA=ˆBHA⇒FCA^=BHA^

Gọi II và OO theo thứ tự là giao điểm của CFCF với BHBH và AH.AH.

Khi đó ˆOCA=ˆIHOOCA^=IHO^

Mà ˆOCA+ˆAOC=90∘OCA^+AOC^=90∘ và ˆAOC=ˆIOHAOC^=IOH^ ((đối đỉnh))

Nên ˆIHO+ˆIOH=90∘,IHO^+IOH^=90∘, suy ra ˆHIO=90∘HIO^=90∘

Do đó IH⊥IOIH⊥IO hay BH⊥CF.    (2)BH⊥CF.    (2)

Vì △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c) nên CF=BH.     (3)CF=BH.     (3)

Từ (1),(1), (2)(2) và (3)(3) suy ra MP=MQMP=MQ và MP⊥MQ.MP⊥MQ. Vậy tam giác MPQMPQ vuông cân tại M.M.

★★★★★★★★★★★★★★★★

Quay lại bài toán. Gọi MM là trung điểm ACAC

Áp dụng kết quả trên, ta chứng minh được tam giác EMFEMF và HMGHMG vuông cân tại M.M.

Từ đó chứng minh được △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c)

Rồi suy ra EG=HFEG=HF và EG⊥HF.EG⊥HF.

b)b) Gọi PP và QQ lần lượt là trung điểm HFHF và EGEG

Từ △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c) dễ dàng chứng minh được △MPF=△MQE (c.g.c)△MPF=△MQE (c.g.c)

Suy ra MP=MQMP=MQ và ˆPMF=ˆQME ⇒ ˆPMQ=ˆEMF=90∘PMF^=QME^ ⇒ PMQ^=EMF^=90∘

Do đó tam giác MPQMPQ vuông cân tại MM

Gọi NN trung điểm BD.BD. Chứng minh tương tự như trên, ta được tam giác NPQNPQ vuông cân tại N.N.

Suy ra tứ giác MPNQMPNQ là hình vuông.

25 tháng 2 2019

Giải bài 65 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có EB = EA, FB = FC (gt)

⇒ EF là đường trung bình của ΔABC

⇒EF // AC và EF = AC/2 (1)

HD = HA, GD = GC

⇒ HG là đường trung bình của ΔADC

⇒ HG // AC và HG = AC/2 (2)

Từ (1) và (2) suy ra EF // HG và EF = HG

⇒ Tứ giác EFGH là hình bình hành (*)

EA = EB, HA = HD ⇒ EH là đường trung bình của ΔABD ⇒ EH // BD.

Mà EF // AC, AC ⊥ BD

⇒ EH ⊥ EF ⇒ Ê = 90º (**)

Từ (*) và (**) suy ra EFGH là hình chữ nhật.

7 tháng 10 2018

Sử dụng tính chất đường trung bình của tam giác

Chứng minh: HEFG là hình bình hành và EF ^ HE

Þ HEFG là hình chữ nhật.

30 tháng 6 2017

Hình chữ nhật

25 tháng 10 2017

Hình chữ nhật

17 tháng 7 2017

xét tam giác ABC có :

EA = FB (gt)

FB = FC (gt)

\(\Rightarrow EF\) là đường trung bình

\(\Rightarrow\) EF // AC và EF = \(\dfrac{1}{2}\) AC (1)

chứng minh tương tự HG là đường trung bình tam giác ADC

HG // AC và HG = \(\dfrac{1}{2}\) AC (2)

từ (1) và (2) ta suy ra EF // HG và EF = HG

\(\Rightarrow\) EFGH là hình bình hành (3)

ta có : EF // AC

EH // BD ( EH là đường trung bình tam giác ABD )

AC \(\perp\) BD ( gt )

\(\Rightarrow\) EF \(\perp\) EH

hay góc E = 90 độ (4)

từ (3) và (4) ta suy ra EFGH là hình chữ nhật


Hỏi đáp Toán
21 tháng 4 2017

Bài giải:

Ta có EB = EA, FB = FC (gt)

Nên EF là đường trung bình của ∆ABC

Do đó EF // AC

HD = HA, GD = GC

Nên HG là đường trung bình của ∆ADC

Do đó HG // AC

Suy ra EF // HG

Tương tự EH // FG

Do đó EFGH là hình bình hành.

EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH hay ˆFEHFEH^ = 900

Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.

15 tháng 4 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ∆ ABC, ta có:

E là trung điểm của AB (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của  ∆ ABC

⇒ EF // AC và EF = 1/2 AC (tính chất đường trung bình tam giác) (1)

* Trong  ∆ DAC, ta có:

H là trung điểm của AD (gt)

G là trung điểm của DC (gt)

Nên HG là đường trung bình của  ∆ DAC.

⇒ HG // AC và HG = 1/2 AC (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Ta lại có: BD ⊥ AC (gt)

EF // AC (chứng minh trên)

Suy ra: EF ⊥ BD

Trong  ∆ ABD ta có EH là đường trung bình ⇒ EH // BD

Suy ra: EF ⊥ EH hay ∠ (FEH) = 90 0

Vậy hình bình hành EFGH là hình chữ nhật.