K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2020

A B C D ( ) O

Bài làm

a) Xét tam giác DAB và tam giác CBA có:

AD = BC ( giả thiết )

\(\widehat{DAB}=\widehat{CBA}\)

AB chung

=> Tam giác DAB = tam giác CBA ( c.g.c )

=> BD = AC ( hai cạnh tương ứng )

b) Vì tam giác DAB = tam giác CBA ( cmt )

=> \(\widehat{ABD}=\widehat{BAC}\)( hai góc tương ứng )

Ta có: \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)

          \(\widehat{BAC}+\widehat{CAD}=\widehat{BAD}\)

Mà \(\widehat{ABD}=\widehat{BAC}\)( cmt )

      \(\widehat{ABC}=\widehat{BAD}\)( giả thiết )

=> \(\widehat{DBC}=\widehat{CAD}\)

Xét tam giác CAD và tam giác DBC có:

BC = AD ( giả thiết )

\(\widehat{DBC}=\widehat{CAD}\)( cmt )

BD = AC ( cmt )

=> Tam giác CAD = tam giác DBC ( c.g.c )

=> \(\widehat{ADC}=\widehat{BCD}\)( hai góc tương ứng )

c) Gọi O là giao điểm của BD và AC

Xét tam giác OAB có: 

\(\widehat{ABD}=\widehat{BAC}\)( cmt )

=> Tam giá OAB cân tại O

=>\(\widehat{ABD}+\widehat{BAC}=180^0-\widehat{AOB}\)

=> \(2\widehat{ABD}=180^0-\widehat{AOB}\)                           (1)

Xét tam giác OCD có:

\(\widehat{BDC}=\widehat{ACD}\)( Do tam giác CAD = tam giác DBC )

=> Tam giác OCD cân tại O

=> \(\widehat{BDC}+\widehat{ACD}=180^0-\widehat{DOC}\)

=> \(2\widehat{BDC}=180^0-\widehat{DOC}\)                      (2)

Ta có: \(\widehat{AOB}=\widehat{DOC}\) ( hai góc đối )                   (3)

Từ (1), (2) và (3) => \(2\widehat{ABD}=2\widehat{BDC}\)   => \(\widehat{ABD}=\widehat{BDC}\)

Mà hai góc này ở vị trí so le trong

=> AB // CD ( đpcm ) 

4 tháng 6 2018

a) Xét tam giác DAB và tam giác CAB có :

AD = BC

\(\widehat{DAB}=\widehat{CBA}\)

Chung AB

\(\Rightarrow\)tam giác DAB = tam giác CAB ( c-g-c )

\(\Rightarrow AC=DB\)( 2 cạnh tương ứng )

b ) Xét tam giác ADC và tam giác BCD có :

AD = BC

AC = BD

chung CD

\(\Rightarrow\)tam giác ADC = tam giác BCD ( c-c-c )

\(\Rightarrow\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )

Xét ΔDAB và ΔCBA có 

DA=CB

\(\widehat{DAB}=\widehat{CBA}\)

BA chung

Do đó: ΔDAB=ΔCBA

Suy ra: DB=CA

26 tháng 9 2021

a) Ta có: AB//CD(ABCD là hthang)

=> \(\widehat{BAK}=\widehat{AKD}\)(so le trong)

Mà \(\widehat{BAK}=\widehat{DAK}\)(AK là phân giác góc A)

=> \(\widehat{AKD}=\widehat{DAK}\)

=> Tam giác ADK cân tại D

=> AD=DK

b) Ta có: CD=AD+BC(gt)

=> CD=DK+BC

Mà CD=BK+KC

=> BC=KC

=> Tam giác BKC cân tại C

c) Ta có: Tam giác BKC cân tại C

\(\Rightarrow\widehat{KBC}=\widehat{BKC}\)

Mà \(\widehat{BKC}=\widehat{ABK}\)(2 góc so le trong do AB//CD)

\(\Rightarrow\widehat{KBC}=\widehat{ABK}\)

=> BK là phân giác góc B

13 tháng 7 2022

vẽ hình đi ạ

 

20 tháng 9 2021

hãy giúp tui

21 tháng 9 2021

\(a,\left\{{}\begin{matrix}\widehat{A_1}=\widehat{A_2}\left(t/c.phân.giác\right)\\\widehat{A_2}=\widehat{K_1}\left(so.le.trong.do.AB//CD\right)\end{matrix}\right.\Rightarrow\widehat{A_1}=\widehat{K_1}\\ \Rightarrow\Delta ADK.cân.tại.D\\ \Rightarrow AD=KD\)

\(b,\left\{{}\begin{matrix}AD+BC=CD\\AD=DK\end{matrix}\right.\Rightarrow DK+BC=CD\)

Mà \(DK+KC=CD\Rightarrow KC=BC\Rightarrow\Delta BKC.cân.tại.C\)

\(c,\Delta BKC.cân.tại.C\Rightarrow\widehat{K_2}=\widehat{B_2}\\ Mà.\widehat{K_2}=\widehat{B_1}\left(so.le.trong.vì.AB//CK\right)\\ \Rightarrow\widehat{B_2}=\widehat{B_1}\\ \Rightarrow BK.là.phân.giác.\widehat{ABC}\)