K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. Thực hiện các phép tính sau :a) \(\frac{x+3}{x+1}-\frac{x-3}{x^2-1}-\frac{2x-1}{x-1}\)b) \(\frac{1}{x\left(x+y\right)}+\frac{1}{x\left(x-y\right)}+\frac{1}{y\left(y+x\right)}+\frac{1}{y\left(y-x\right)}\)Bài 2. Phân tích đa thức sau thành nhân tử : P(x) = (x + a)(x + 2a)(x + 3a)(x + 4a) - 15a4Bài 3. Giải phương trình : x4 + 3x3 + 4x2 + 3x + 1 = 0Bài 4. Tìm GTLN và GTNN của biểu thức : \(A=\frac{3-4x}{x^2+1}\)Bài 5. Cho hình thang ABCD (AB // CD)....
Đọc tiếp

Bài 1. Thực hiện các phép tính sau :

a) \(\frac{x+3}{x+1}-\frac{x-3}{x^2-1}-\frac{2x-1}{x-1}\)

b) \(\frac{1}{x\left(x+y\right)}+\frac{1}{x\left(x-y\right)}+\frac{1}{y\left(y+x\right)}+\frac{1}{y\left(y-x\right)}\)

Bài 2. Phân tích đa thức sau thành nhân tử : P(x) = (x + a)(x + 2a)(x + 3a)(x + 4a) - 15a4

Bài 3. Giải phương trình : x4 + 3x3 + 4x2 + 3x + 1 = 0

Bài 4. Tìm GTLN và GTNN của biểu thức : \(A=\frac{3-4x}{x^2+1}\)

Bài 5. Cho hình thang ABCD (AB // CD). Các tia phân giác của góc A và góc D cắt nhau ở I; các tia phân giác của góc B và góc C cắt nhau ở J. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh bốn điểm M, N, I, J thẳng hàng.

Bài 6. Cho hình bình hành ABCD. Trên các cạnh AB, BC, CD và DA ta dựng về phía ngoài các hình vuông lần lượt có tâm là O1, O2, O3, O4. Chứng minh tứ giác O1O2O3O4 là hình vuông.

(Các bạn có thể giải bất kì câu nào mà các bạn muốn)

0
27 tháng 9 2019

A B C P O1 P3 P2 P1 O2 O3

Chứng minh:

a) Chứng minh ABP2P3 là hình bình hành.

Xét tứ giác AP3CP có: O3 là trung điểm của hai đường chéo AC và PP3

=> AP3CP là hình bình hành => AP3 //= PC  (1) 

Xét tứ giác BP2CP có: O2 là trung điểm của hai đường chéo BC và PP2

=> BP2CP là hình bình hành => BP2 //= PC  (2)

Từ (1); (2) => AP3 //= BP2

=> ABP2P3 là hình bình hành.

b) Tương tự như trên chúng ta cũng chứng minh được BP1P3C LÀ HÌNH bình hành

=> CP1 cắt BP3 tại trung điểm mỗi đường ,gọi điểm đó là I  (3)

ABP2P3 là hình bình hành.

=> AP2 cắt BP tại trung điểm mỗi đường  (4)

Từ (3); (4) => I là trung điểm AP2 

=>  3 Đường thẳng AP2, BP3, CP1 đồng qui.

28 tháng 9 2019

cảm ơn bạn nhé <333