Cho tứ giác ABCD thay đổi, luôn nội tiếp đường tròn 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2015

Nhận xét : A, B, C, D có vai trò bình đẳng nhau nên nếu O không thuộc miền trong ∆ICD, chẳng hạn O thuộc miền trong ∆IAD, khi đó dễ dàng thấy S(ICD) < S(IAD). Vậy chỉ xét trường hợp O thuộc miền trong ∆ICD. 
Vẽ OH _|_ AC tại H; Vẽ OK _|_ BK tại K => IK = OH; IH = OK. Đặt IC = a > 0; ID = b > 0; 
Ta có: CH = IC - IH <=> CH² = IC² + IH² - 2IC.IH <=> OC² - OH² = IC² + OK² - 2IC.OK <=> 2IC.OK = IC² - OC² + (OH² + OK²) = IC² - OC² + OI² <=> 2a.OK = a² - 5 + 1 = a² - 4 <=> 2OK = a - 4/a <=> 4OK² = a² + 16/a² - 8 (1) 
Tương tự : 4OH² = b² + 16/b² - 8 (2) 
(1) + (2) : a² + b² + 16(1/a² + 1/b²) - 16 = 4(OH² + OK²) = 4OI² = 4 
<=> a² + b² + 16(1/a² + 1/b²) = 20 
<=> ab + 16/ab ≤ 10 (vì 2ab ≤ a² + b² ; 2/ab ≤ 1/a² + 1/b²) 
<=> S² - 5S + 4 ≤ 0 ( với S = ab/2 = S(ICD)) 
<=> (S - 5/2)² ≤ 9/4 
<=> - 3/2 ≤ S - 5/2 ≤ 3/2 
<=> 1 ≤ S ≤ 4 
Vậy Max S = 4 khi a = b = 2√2; Min S = 1 khi a = b = √2 
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20150404221719AAVrhVe

4 tháng 4 2016

Đáp án là 4 bạn ak

còn về cách giải thì khá là phức tạp

5 tháng 4 2016

trên mạng có bài giống thế này đấy 

MaxS=4; Mín=1

8 tháng 4 2015

 1. Nhận xét : A, B, C, D có vai trò bình đẳng nhau nên nếu O không thuộc miền trong ∆ICD, chẳng hạn O thuộc miền trong ∆IAD, khi đó dễ dàng thấy S(ICD) < S(IAD). Vậy chỉ xét trường hợp O thuộc miền trong ∆ICD. 
Vẽ OH _|_ AC tại H; Vẽ OK _|_ BK tại K => IK = OH; IH = OK. Đặt IC = a > 0; ID = b > 0; 
Ta có: CH = IC - IH <=> CH² = IC² + IH² - 2IC.IH <=> OC² - OH² = IC² + OK² - 2IC.OK <=> 2IC.OK = IC² - OC² + (OH² + OK²) = IC² - OC² + OI² <=> 2a.OK = a² - 5 + 1 = a² - 4 <=> 2OK = a - 4/a <=> 4OK² = a² + 16/a² - 8 (1) 
Tương tự : 4OH² = b² + 16/b² - 8 (2) 
(1) + (2) : a² + b² + 16(1/a² + 1/b²) - 16 = 4(OH² + OK²) = 4OI² = 4 
<=> a² + b² + 16(1/a² + 1/b²) = 20 
<=> ab + 16/ab ≤ 10 (vì 2ab ≤ a² + b² ; 2/ab ≤ 1/a² + 1/b²) 
<=> S² - 5S + 4 ≤ 0 ( với S = ab/2 = S(ICD)) 
<=> (S - 5/2)² ≤ 9/4 
<=> - 3/2 ≤ S - 5/2 ≤ 3/2 
<=> 1 ≤ S ≤ 4 
Vậy Max S = 4 khi a = b = 2√2; Min S = 1 khi a = b = √2 

2 tháng 4 2016

ID=IC=\(\sqrt{3}+2\sqrt{2}\)

S max = \(\frac{11+4\sqrt{6}}{2}\)

max của chu vi hay diện tích?

9 tháng 4 2015

Max SICD =4cm2

31 tháng 5 2017

a/ Ta có CF vuông góc AB tại F (gt) 

Nên góc CFB = 90 độ 

BE vuông góc AC tại E 

Nên góc BEC = 90 độ 

Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt 

Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .

góc BEC = 90 độ (cmt)

Nên tam giác BEC vuông tại E 

Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .

4 tháng 4 2016

Nhận xét : A, B, C, D có vai trò bình đẳng nhau nên nếu O không thuộc miền trong ∆ICD, chẳng hạn O thuộc miền trong ∆IAD, khi đó dễ dàng thấy S(ICD) < S(IAD). Vậy chỉ xét trường hợp O thuộc miền trong ∆ICD. 
Vẽ OH _|_ AC tại H; Vẽ OK _|_ BK tại K => IK = OH; IH = OK. Đặt IC = a > 0; ID = b > 0; 
Ta có: CH = IC - IH <=> CH² = IC² + IH² - 2IC.IH <=> OC² - OH² = IC² + OK² - 2IC.OK <=> 2IC.OK = IC² - OC² + (OH² + OK²) = IC² - OC² + OI² <=> 2a.OK = a² - 5 + 1 = a² - 4 <=> 2OK = a - 4/a <=> 4OK² = a² + 16/a² - 8 (1) 
Tương tự : 4OH² = b² + 16/b² - 8 (2) 
(1) + (2) : a² + b² + 16(1/a² + 1/b²) - 16 = 4(OH² + OK²) = 4OI² = 4 
<=> a² + b² + 16(1/a² + 1/b²) = 20 
<=> ab + 16/ab ≤ 10 (vì 2ab ≤ a² + b² ; 2/ab ≤ 1/a² + 1/b²) 
<=> S² - 5S + 4 ≤ 0 ( với S = ab/2 = S(ICD)) 
<=> (S - 5/2)² ≤ 9/4 
<=> - 3/2 ≤ S - 5/2 ≤ 3/2 
<=> 1 ≤ S ≤ 4 
Vậy Max S = 4 khi a = b = 2√2; Min S = 1 khi a = b = √2 

4 tháng 4 2016

SICD max=4