\(\sqrt{5}\)cm) và có hai đường ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2015

Nhận xét : A, B, C, D có vai trò bình đẳng nhau nên nếu O không thuộc miền trong ∆ICD, chẳng hạn O thuộc miền trong ∆IAD, khi đó dễ dàng thấy S(ICD) < S(IAD). Vậy chỉ xét trường hợp O thuộc miền trong ∆ICD. 
Vẽ OH _|_ AC tại H; Vẽ OK _|_ BK tại K => IK = OH; IH = OK. Đặt IC = a > 0; ID = b > 0; 
Ta có: CH = IC - IH <=> CH² = IC² + IH² - 2IC.IH <=> OC² - OH² = IC² + OK² - 2IC.OK <=> 2IC.OK = IC² - OC² + (OH² + OK²) = IC² - OC² + OI² <=> 2a.OK = a² - 5 + 1 = a² - 4 <=> 2OK = a - 4/a <=> 4OK² = a² + 16/a² - 8 (1) 
Tương tự : 4OH² = b² + 16/b² - 8 (2) 
(1) + (2) : a² + b² + 16(1/a² + 1/b²) - 16 = 4(OH² + OK²) = 4OI² = 4 
<=> a² + b² + 16(1/a² + 1/b²) = 20 
<=> ab + 16/ab ≤ 10 (vì 2ab ≤ a² + b² ; 2/ab ≤ 1/a² + 1/b²) 
<=> S² - 5S + 4 ≤ 0 ( với S = ab/2 = S(ICD)) 
<=> (S - 5/2)² ≤ 9/4 
<=> - 3/2 ≤ S - 5/2 ≤ 3/2 
<=> 1 ≤ S ≤ 4 
Vậy Max S = 4 khi a = b = 2√2; Min S = 1 khi a = b = √2 
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20150404221719AAVrhVe

4 tháng 4 2016

Đáp án là 4 bạn ak

còn về cách giải thì khá là phức tạp

5 tháng 4 2016

trên mạng có bài giống thế này đấy 

MaxS=4; Mín=1

2 tháng 4 2016

ID=IC=\(\sqrt{3}+2\sqrt{2}\)

S max = \(\frac{11+4\sqrt{6}}{2}\)

max của chu vi hay diện tích?

4 tháng 4 2016

Nhận xét : A, B, C, D có vai trò bình đẳng nhau nên nếu O không thuộc miền trong ∆ICD, chẳng hạn O thuộc miền trong ∆IAD, khi đó dễ dàng thấy S(ICD) < S(IAD). Vậy chỉ xét trường hợp O thuộc miền trong ∆ICD. 
Vẽ OH _|_ AC tại H; Vẽ OK _|_ BK tại K => IK = OH; IH = OK. Đặt IC = a > 0; ID = b > 0; 
Ta có: CH = IC - IH <=> CH² = IC² + IH² - 2IC.IH <=> OC² - OH² = IC² + OK² - 2IC.OK <=> 2IC.OK = IC² - OC² + (OH² + OK²) = IC² - OC² + OI² <=> 2a.OK = a² - 5 + 1 = a² - 4 <=> 2OK = a - 4/a <=> 4OK² = a² + 16/a² - 8 (1) 
Tương tự : 4OH² = b² + 16/b² - 8 (2) 
(1) + (2) : a² + b² + 16(1/a² + 1/b²) - 16 = 4(OH² + OK²) = 4OI² = 4 
<=> a² + b² + 16(1/a² + 1/b²) = 20 
<=> ab + 16/ab ≤ 10 (vì 2ab ≤ a² + b² ; 2/ab ≤ 1/a² + 1/b²) 
<=> S² - 5S + 4 ≤ 0 ( với S = ab/2 = S(ICD)) 
<=> (S - 5/2)² ≤ 9/4 
<=> - 3/2 ≤ S - 5/2 ≤ 3/2 
<=> 1 ≤ S ≤ 4 
Vậy Max S = 4 khi a = b = 2√2; Min S = 1 khi a = b = √2 

4 tháng 4 2016

SICD max=4

9 tháng 4 2015

Max SICD =4cm2

29 tháng 3 2019

Bạn tự vẽ hình nha ^-^

a, Xét tứ giác BFEC có:

BFC=BEC =90  mà 2 góc này cùng nhìn cạnh BC 

nên tứ giác BFEC nội tiếp

b,Ta thấy 

BPQ= 1/2 cung BQ

BCQ=1/2 cung BQ 

nên BPQ=BCQ

c,Tứ giác BFEC nội tiếp nên  EBC=EFC (cùng nhìn cạnh EC)

và PBC=PQC (góc nội tiếp cùng chắn cung PC)

nên CFE=CQP (=PBC)

mà 2 góc ở vị trí đồng vị nên EF//QP

d, Kéo dài OA cắt đường tròn (O,R) tại I 

ta có :AEF=ABC=1/2 cung AC

IAC =1/2 cung IC

nên AEF+IAC=1/2(cung AC+cung IC)=1/2 cung AI=90

vậy AO vuông góc với EF

a, Xét tứ giác BFEC có:

BFC=BEC =90  mà 2 góc này cùng nhìn cạnh BC 

nên tứ giác BFEC nội tiếp

b,Ta thấy 

BPQ= 1/2 cung BQ

BCQ=1/2 cung BQ 

nên BPQ=BCQ

c,Tứ giác BFEC nội tiếp nên  EBC=EFC (cùng nhìn cạnh EC)

và PBC=PQC (góc nội tiếp cùng chắn cung PC)

nên CFE=CQP (=PBC)

mà 2 góc ở vị trí đồng vị nên EF//QP

d, Kéo dài OA cắt đường tròn (O,R) tại I 

ta có :AEF=ABC=1/2 cung AC

IAC =1/2 cung IC

nên AEF+IAC=1/2(cung AC+cung IC)=1/2 cung AI=90

vậy AO vuông góc với EF