K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

a) + ∆ABO có  IM // AO

⇒ OB/IB = AO/IM   (1)

+ ∆IDP có AO // IP

⇒ ID/OD = IP/OA (2)

Nhân (1) với (2), ta được :

OB/IB . ID/OD = AO/IM . IP/OA ⇔ ID/IB . OB/OD = IP/IM (ĐPCM)

b) + ∆OBC có IN // OC

⇒ BO/IB = OC/IN (3)

+ ∆DQI có OC // IQ ⇒ ID/OD = IQ/OC (4)

Nhân (3) với (4) , ta được :

BO/IB . ID/OD = OC/IN . IQ/OC ⇔ ID/IB . OB/OD = IQ/IN (5) 

+ Theo câu a) , ta có : ID/IB . OB/OD = IP/IM (6)

Từ (5) và (6) suy ra :  IP/IM = IQ/IN  (dpcm)

22 tháng 3 2020

a) \(\Delta\)AOB có: MI //AO \(\Rightarrow\frac{MI}{AO}=\frac{IB}{OB}\)

\(\Delta\)DPI có: AO//IP

\(\Rightarrow\frac{OA}{IP}=\frac{OD}{ID}\)

\(\Rightarrow\frac{MI}{AO}\cdot\frac{AO}{IP}=\frac{IB}{BO}\cdot\frac{OD}{IID}\)

\(\Rightarrow\frac{MI}{IP}=\frac{IB}{ID}\cdot\frac{OD}{OB}\)

b) \(\Delta DIQ\)có: OC // IQ \(\Rightarrow\frac{OC}{IQ}=\frac{OD}{ID}\left(1\right)\)

\(\Delta BOC\)có: IN//OC \(\Rightarrow\frac{IN}{DC}=\frac{BI}{BD}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\hept{\begin{cases}\frac{OC}{IQ}=\frac{IN}{OC}=\frac{OD}{ID}\cdot\frac{BI}{BO}\\\frac{IN}{IQ}=\frac{IB}{ID}\cdot\frac{OD}{OB}\end{cases}}\)

Theo câu (a) có: \(\frac{IM}{IP}=\frac{IB}{ID}\cdot\frac{OD}{OB}\)

\(\Rightarrow\frac{IM}{IP}=\frac{IN}{IQ}\left(đpcm\right)\)

4 tháng 2 2020

A B C D O M N P Q

a) ∆ABO có  IM // AO

\(\Rightarrow\frac{IB}{OB}=\frac{IM}{AO}\)  (1)

∆IDP có AO // IP

\(\Rightarrow\frac{OD}{ID}=\frac{OA}{IP}\)(2)

Nhân (1) với (2), ta được :

\(\frac{IB}{OB}.\frac{OD}{ID}=\frac{IM}{AO}.\frac{OA}{IP}\)

\(\Leftrightarrow\frac{IB}{ID}.\frac{OD}{OB}=\frac{IM}{IP}\)(ĐPCM)

b) ∆OBC có IN // OC

\(\Rightarrow\frac{IB}{BO}=\frac{IN}{OC}\)(3)

∆DQI có OC // IQ

\(\Rightarrow\frac{OD}{ID}=\frac{OC}{IQ}\)(4)

Nhân (3) với (4) , ta được :

\(\frac{IB}{BO}.\frac{OD}{ID}=\frac{IN}{OC}.\frac{OC}{IQ}\)

\(\Leftrightarrow\frac{IB}{ID}.\frac{OD}{OB}=\frac{IN}{IQ}\)(5) 

Theo câu a) , ta có :

\(\frac{IB}{ID}.\frac{OD}{OB}=\frac{IM}{IP}\)(6)

Từ (5) và (6) suy ra : \(\frac{IM}{IP}=\frac{IN}{IQ}\)(ĐPCM)

2:

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:A, IP/OA=IB/OBB,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:

A, IP/OA=IB/OB

B, IP/IS=IB/ID*OD/OB

C, IP/IS=IQ/IR

3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

1

Câu 3: 

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0