K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB\(\sim\)ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)

b: Xét ΔCAD có OE//AD

nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)

Xét ΔBDC có OF//BC

nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)

=>DE=CF

 

13 tháng 9 2023

a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:

\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)

Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Xét tam giác \(ABD\) có:

\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Theo định lí Thales đảo suy ra \(EF//BD\).

b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:

\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)

Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:

\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)

Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)

Theo định lí Thales đảo suy ra \(GH//BD\).

Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:

\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).

a: Xét ΔADC có OF//DC

nên AF/AD=AO/AC

Xét ΔABC có EO//BC

nên AE/AB=AO/AC

=>AF/AD=AE/AB

=>EF//BD

b: OH//AD

=>CH/CD=CO/CA

OG//AB

=>CG/BC=CO/CA

=>CG/BC=CH/CD

=>GH//BD

=>CH/DH=CG/BG

=>CH*BG=DH*CG

28 tháng 1 2022

a) Xét tam giác ABC có: OE // BC (gt).

\(\Rightarrow\) \(\dfrac{AE}{AB}=\dfrac{AO}{AC}\left(Talet\right).\left(1\right)\)

Xét tam giác ACD có: OF // CD (gt).

\(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AO}{AC}\left(Talet\right).\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AE}{AB}.\)

Xét tam giác ABD có: \(\dfrac{AF}{AD}=\dfrac{AE}{AB}\left(cmt\right).\)

\(\Rightarrow\) EF // BD (định lý Talet đảo).

 

21 tháng 11 2021

Mọi người giải giúp mình ạ, mình cảm ơn nhiều <333

21 tháng 11 2021

Không bít giải xin lũi bn nha :(