Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm hai đường chéo AC và BD
- Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được :
\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)
- Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được :
\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)
Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)
hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB\)
\(OB+OC>BC\)
\(OC+OD>DC\)
\(OD+OA>AD\)
Cộng vế theo vế thì \(2\left(OA+OB+OC+OD\right)>AB+BC+CA+AD\)
\(\Rightarrow OA+OB+OC+OD>\frac{AB+BC+CA+AD}{2}\) ( 1 )
Theo bất đẳng thức tam giác ta có:
\(AB+BC>CA;BC+CD>BD;CD+DA>CA;DA+AB>BD\)
Cộng vế theo vế ta có:
\(2\left(AB+BC+CD+AD\right)>2\left(CA+BD\right)=2\left(AO+OC+OD+OB\right)\)
\(\Leftrightarrow AB+BC+CD+DA>OA+OB+OC+OD\) ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra đpcm.
a/
OA=OB (gt); OC=OD (gt) => ACBD là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
b/
AD=CB (trong hình bình hành các cặp cạnh đối bằng nhau từng đôi 1)
c/
AB//BC (trong hbh các cặp cạnh đối // với nhau từng đôi 1)
=> AM//BN (1)
Ta có
AD=CB(cmt); MA=MD (gt); NB=NC (gt) => AM=BN (2)
Từ (1) và (2) => AMBN là hbh (tứ giác có cặp cạnh đối // và bằng nhau là hbh)
Nối M với N giả sử MN cắt AB tại O'
=> O'A=O'B (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm của AB
Mà O cũng là trung điểm của AB => O' trùng với O => M; O; N thẳng hàng
Bạn ghi nhầm đề thì phải, tự nhiên ban đầu có BC+CB, chắc là BC+CD
Sử dụng BĐT tam giác cho các tam giác OAB, OBC, OCD, OAD ta có:
OA+OB>AB; OB+OC>BC; OC+OD>CD; OA+OD>AD
Cộng vế với vế ta được:
2(OA+OB+OC+OD)>AB+BC+CD+AD
\(\Rightarrow OA+OB+OC+OD>\dfrac{AB+BC+CD+AD}{2}\) (1)
Tương tự, sử dụng BĐT tam giác cho các tam giác ABC, BCD, CDA, DAB ta có:
AB+BC>AC=OA+OC
BC+CD>BD=OB+OD
CD+AD>AC=OA+OC
DA+AB>BD=OB+OD
Cộng vế với vế các BĐT trên ta được:
\(2\left(AB+BC+CD+AD\right)>2\left(OA+OB+OC+OD\right)\)
\(\Rightarrow AB+BC+CD+AD>OA+OB+OC+OD\) (2)
Từ (1) và (2) ta có đpcm
Hình bạn vẽ nha bạn.
Áp dụng bất đẳng thức tam giác, ta có:
\(AB< OA+OB\)
\(BC< OB+OC\)
\(CD< OC+OD\)
\(DA< OD+OA\)
Do đó: \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)
Hay \(OA+OB+OC+OD>\dfrac{AB+BC+CD+DA}{2}\)(1)
Ta lại áp dụng bất đẳng thức tam giác:
\(AB+BC>AC\)
\(BC+CD>BD\)
\(CD+AD>AC\)
\(AB+AD>BD\)
Do đó: \(2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\)
Hay \(AB+BC+CD+DA>OA+OB+OC+OD\)(2)
Từ (1) và (2) ta suy ra:
\(\dfrac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+DA\)
Bạn ghi sai cái đề chỗ \(\dfrac{AB+BC+CB+AD}{2}\) nha