K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có

ΔADB nội tiếp đường tròn(A,D,B∈(O))

AB là đường kính

Do đó: ΔADB vuông tại D(Định lí)

\(\widehat{ADB}=90^0\)

hay \(\widehat{ADE}=90^0\)

Xét tứ giác ADEH có 

\(\widehat{ADE}\) và \(\widehat{AHE}\) là hai góc đối

\(\widehat{ADE}+\widehat{AHE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADEH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

3: Xét ΔIOD và ΔIBC có

góc ICB=góc IDO

góc OID=góc BIC

=>ΔIOD đồng dạng với ΔIBC

=>IO/IB=ID/IC

=>IO*IC=IB*ID

30 tháng 5 2023

IO*IC=IB*IF

19 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tam giác vuông EFD có:

FM là đường trung tuyến ứng với cạnh huyền CD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 là góc ngoài tại đỉnh M của tam giác FMD nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tứ giác BCMF có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và cùng nhìn cạnh BF dưới một góc bằng nhau

Suy ra, tứ giác BCMF nội tiếp được.

a) Xét (O) có 

ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))

AD là đường kính(gt)

Do đó: ΔACD vuông tại C(Định lí)

Suy ra: AC\(\perp\)CD tại C

hay \(EC\perp CD\) tại C

Xét tứ giác ECDF có 

\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối

\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)