K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

A B C O I A' B' C' E F D G S

a) Ta có ^AIC' = ^IAC + ^ICA = ^IAB + ^ICB = ^IAB + ^BAC' = ^IAC' => \(\Delta\)AC'I cân tại C'

=> C' nằm trên trung trực của AI. Tương tự B' cũng nằm trên trung trực của AI => B'C' vuông góc AI

Hay A'I vuông góc với B'C'. Lập luận tương tự B'I vuông góc A'C', C'I vuông góc A'B'

Do đó I là trực tâm của \(\Delta\)A'B'C' (đpcm).

b) Ta thấy ^FDE = ^A'DC' = ^A'AC' = ^IAC' = C'IA (Vì \(\Delta\)AC'I cân tại C') = ^EIC'

Suy ra tứ giác DEIF nội tiếp (đpcm).

c) Gọi S là tâm ngoại tiếp của \(\Delta\)DEF. Vì tứ giác DEIF nội tiếp (cmt) nên S đồng thời là tâm ngoại tiếp DEIF

Gọi giao điểm thứ hai giữa (S) và (O) là G. Khi đó ^DFG = ^DEG => ^GFA' = ^GEC'

Lại có ^EGF = ^EDF = ^A'DC' = ^A'GC' => ^FGA' = ^EGC'. Do vậy \(\Delta\)GEC' ~ \(\Delta\)GFA' (g.g)

=> \(\frac{GC'}{GA'}=\frac{EC'}{FA'}\). Mặt khác ^A'IF = ^C'IA = ^C'AI = ^C'AE và ^IA'F = ^AA'D = ^AC'D = ^AC'E

Cho nên \(\Delta\)AEC' ~ \(\Delta\)IFA' (g.g) => \(\frac{EC'}{FA'}=\frac{AC'}{IA'}\). Mà các điểm A,I,A',C' đều cố định

Nên tỉ số \(\frac{AC'}{FA'}\) là bất biến. Như vậy \(\frac{GC'}{GA'}\)không đổi, khi đó tỉ số giữa (GC' và (GA' của (O) không đổi

Kết hợp với (O), A',C' cố định suy ra G là điểm cố định. Theo đó trung trực của IG cố định

Mà S thuộc trung trực của IG (do D,I,E,F,G cùng thuộc (S)) nên S di động trên trung trực của IG cố định (đpcm).

Cho đường tròn (O;R) và dây AB không qua tâm. Gọi I là trung điểm của AB. Trên cung nhỏ AB lấy các điểm phân biệt C và E bất kì ( khác A và B). Gọi F, D lần lượt là giao điểm của EI và CI với (O).a) CM: IE.IF= IC.IDb) Vẽ dây cung FG song song AB. Gọi M, N lần lượt là giao điểm của CF, ED với AB. CMR: tam giác IFG cân tại I, từ đó chỉ ra rằng tứ giác có bốn đỉnh I, D, N, G là tứ giác nội...
Đọc tiếp

Cho đường tròn (O;R) và dây AB không qua tâm. Gọi I là trung điểm của AB. Trên cung nhỏ AB lấy các điểm phân biệt C và E bất kì ( khác A và B). Gọi F, D lần lượt là giao điểm của EI và CI với (O).

a) CM: IE.IF= IC.ID

b) Vẽ dây cung FG song song AB. Gọi M, N lần lượt là giao điểm của CF, ED với AB. CMR: tam giác IFG cân tại I, từ đó chỉ ra rằng tứ giác có bốn đỉnh I, D, N, G là tứ giác nội tiếp.

c)Gọi H,K lần lượt là trung điểm CF, ED. CMR: tam giác CHI đồng dạng tam giác EKI, từ đó chỉ ra rằng I là trung điểm của đoạn thẳng MN.

d) Gọi L là giao điểm của AC, DB; T là giao điểm của CE và GD; V là giao điểm của hai đường tròn ngoại tiếp các tam giác AEV và tam giác DET. CMR: 4 điểm D,A,L,Q cùng thuộc một đường tròn, từ đó chỉ ra rằng ba điểm L,T,V thẳng hàng

0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) ∠ACB = 90o (góc nội tiếp chắn nửa đường tròn)=>∠FCE = 90o

∠ADB = 90o (góc nội tiếp chắn nửa đường tròn)=>∠FDE = 90o

Xét tứ giác CEDF có:

∠FCE = 90o

∠FDE = 90o

=> ∠FCE + ∠FDE = 180 o

=> Tứ giác CEDF là tứ giác nội tiếp

b) Xét ΔAFD và ΔBFC có:

∠AFB là góc chung

∠ADF = ∠BCF = 90o

=> ΔAFD ∼ ΔBFC

\(\Rightarrow\frac{FA}{FB}=\frac{FD}{FC}\)=> FA.FC = FB.FD

c) Do ∠FCE = 90oNên FE là đường kính đường tròn ngoại tiếp tứ giác CEDF

Do đó trung điểm I của FE là tâm đường tròn ngoại tiếp tứ giác CEDF

Tam giác CFI có IC = IF => ΔCFI cân tại I

=> CFI = ∠FCI

Tứ giác CEDF nội tiếp =>∠CFI = CDE (2 góc nội tiếp cùng chắn \(\widebat{EC}\))

Tứ giác ACDB nội tiếp =>∠CDE = ∠CBA(2 góc nội tiếp cùng chắn \(\widebat{AC}\))

ΔAOB cân tại O =>∠BCO = ∠CBA

=> ∠FCI = ∠BCO

=> ∠FCI + ∠ECI = ∠BCO + ∠ECI <=> ∠FCE = ∠ICO

=> ∠ICO = 90o

Vậy IC là tiếp tuyến của (O)

d) Chứng minh tương tự câu c, ta có ∠IDO) = 90o

Xét tứ giác ICOD có:

∠ICO = ∠IDO = ∠COD = 90o

=> Tứ giác ICOD là hình chữ nhật

Lại có OC = OD = R

=> Tứ giác ICOD là hình vuông.

Có OI là đường chéo hình vuông cạnh R

=> OI = R√2

O cố định, do đó I thuộc đường tròn tâm O, bán kính R√2 cố định

HÌNH THÌ VÀO THỐNG KÊ NHA

Ai k sai ngon thì làm bài ik