\(\left(AI+DI\right)^2+\left(BI+CI...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

Bài 1: Nhường chủ tus và các bạn:D

Bài 2(ko chắc nhưng vẫn làm:v): A B C D O

Do OA = OB(*) nên \(\Delta\)OAB cân tại O nên ^OAB = ^OBA (1)

Mặt khác cho AB // CD nên^OAB = ^OCD; ^OBA = ^ODC (so le trong) (2)

Từ (1) và (2) có ^OCD = ^ODC nên \(\Delta\) ODC cân tại O nên OC = OD (**)

Cộng theo vế (*) và (**) thu được:OA + OC = OB + OD

Hay AC = BD. Do đó hình thang ABCD có 2 đường chéo bằng nhau nên nó là hình thang cân (đpcm)

26 tháng 6 2019

A B C D I K M N

Hướng dẫn: 

Lấy N, M lần lượt là trung điểm của AD, BC 

Sử dụng tính chất đường trung bình.

Em chứng minh N, I, K, M thẳng hàng (  Chứng minh: NI, NK, NM cùng song song với DC, AB)

IK=NM-NI-MK

NM=(AB+DC)/2    , NI=AB/2,   MK=AB/2

=>IK= thay vào rồi tính = kết quả trên đề bài

7 tháng 5 2017

a) \(a^2+b^2+c^2+d^2=ab+bc+ac+cd.\)

<=>\(2a^2+2b^2+2c^2+2d^2=2ab+2ac+2bc+2cd\)

<=>\(2a^2+2b^2+2c^2+2d^2-2ab-2bc-2ac-2cd=0\)

<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)+\left(d^2-2cd+c^2\right)\)=0

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(d-c\right)^2=0\)

=>a=b=c=d

=> ABCD là hình thoi