Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD có
M là trung điểm của AB
X là trung điểm của AD
Do đó: MX là đường trung bình của ΔABD
Suy ra: MX//BD và \(MX=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra XM//NP và XM=NP
Xét tứ giác XMNP có
XM//NP
XM=NP
Do đó: XMNP là hình bình hành
Suy ra: Hai đường chéo XN và MP cắt nhau tại trung điểm của mỗi đường
hay I là trung điểm của MP
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
P là trung điểm của CD
N là trung điểm của BC
Do đó: PN là đường trung bình của ΔABD
Suy ra: PN//BD và \(PN=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//PN và MQ=PN
hay MNPQ là hình bình hành
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Sử dụng đường trung bình, ta có: KN = 1/2 AB, NI = 1/2 CD , IM = 1/2 AB , MK = 1/2 CD
Mà AB = CD (gt)
\(\Rightarrow KN=NI=IM=MK\)
\(\Rightarrow KNIM\)là hình thoi
Do đó: MN là tia phân giác của \(\widehat{IMK}\)(tính chất hình thoi)
Chúc bạn học tốt.
Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MNPQ là hình bình hành(5)
Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2=BD/2=MQ(3) và MN//AC
=>MN vuông góc với MQ(4)
Từ (3), (4)và (5) suy ra MNPQ là hình vuông
Sửa đề: M là trung điểm của AD
Gọi E là trung điểm của BD
Xét ΔDAB có
M là trung điểm của AD
E là trung điểm của BD
DO đó: ME là đường trung bình
=>ME=AB/2
Xét ΔBDC có
E là trung điểm của BD
N là trung điểm của BC
Do đó: EN là đường trung bình
=>EN=DC/2
\(MN\le ME+EN=\dfrac{AB+CD}{2}\)
nên \(AB+CD\ge2MN\)