Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của PB lấy H sao cho BP = PH
ΔBPC và ΔHPD có:
BP = HP (cách vẽ)
\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)
PC = PD (gt)
Do đó, ΔBPC=ΔHPD(c.g.c)
=> BC = DH (2 cạnh t/ứng)
và \(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD
ΔABH có: M là trung điểm của AB (gt)
P là trung điểm của BH (vì HP = BP)
Do đó MP là đường trung bình của ΔABH
\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH
\(\Rightarrow2MP=AH\)
Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)
\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))
\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)
Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)
Do đó, \(AD+DH=AH\)
=> A,D,H thẳng hàng
Mà HD // BC (cmt) nên AD // BC
Tương tự: AB // CD
Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)
Do đó, ABCD là hình bình hành
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học
bài 1 vừa kiến thức lớp 7 và lớp 8 luôn từ từ mk suy nghĩ!!
6765756875878769689878568787856745
Bạn nào cần thì xem nè ( đợi lâu quá trời luôn mà không có ai trả lời mình hết )
Gọi I,J lần lượt là trung điểm của EC và ED.
Ta có tứ giác EINJ là hình bình hành ⇒EJ=NI,EI=NJ và ∠EIN=∠EJN.
Chú ý các tam giác CKE,DHE vuông tại K,H, theo tính chất đường trung tuyến
⇒JH=JE=IN,IK=IE=JN
Ta có KIC,HJD là các tam giác cân tại I và J, từ đó
∠KIE=2∠ACB=2∠ADB=∠HJE⇒∠KIN=∠HJN.
Do đó △KIN=△NJH (c.g.c)⇒NK=NH.
Chứng minh tương tự MH=MK⇒MN là đường trung trực của HK.
Bởi vậy HK⊥MN