Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=AD+DF+FB
AC=AE+EG+GC
TAM GIÁC ABC=AD+DF+FB+AE+EG+GC
MÀ AD=DF=FB
SUY RA AE=EG=GC
* AD=DF
AE=EG
FD=FB
GE=GC
SUY RA DE ,FG LÀ ĐTB TAM GIÁC ABC
SUY RA DE=1/2 BC
FG=1/2 BC
SUY RA DE+FG=BC
B. DE=FG=1/2BC
SUY RA DE=FG=1/2X9=4.5cm
AB=AD+DF+FB
AC=AE+EG+GC
TAM GIÁC ABC=AD+DF+FB+AE+EG+GC
MÀ AD=DF=FB
SUY RA AE=EG=GC
* AD=DF
AE=EG
FD=FB
GE=GC
SUY RA DE ,FG LÀ ĐTB TAM GIÁC ABC
SUY RA DE=1/2 BC
FG=1/2 BC
SUY RA DE+FG=BC
B. DE=FG=1/2BC
SUY RA DE=FG=1/2X9=4.5cm
qua điểm E thuộc đg chéo BD của tgiac ABCD, vẽ EF//AD( F thuộc AB), EG//DC( G thuộc BC). cm: FG //AC
a) Xét tam giác ABC có: OE // BC (gt).
\(\Rightarrow\) \(\dfrac{AE}{AB}=\dfrac{AO}{AC}\left(Talet\right).\left(1\right)\)
Xét tam giác ACD có: OF // CD (gt).
\(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AO}{AC}\left(Talet\right).\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{AF}{AD}=\dfrac{AE}{AB}.\)
Xét tam giác ABD có: \(\dfrac{AF}{AD}=\dfrac{AE}{AB}\left(cmt\right).\)
\(\Rightarrow\) EF // BD (định lý Talet đảo).
Áp dụng định lý Ta-lét trong ΔABD với EF // AD, ta có B E E D = B F F A (1)
Áp dụng định lý Ta-lét trong ΔBDC với EG // DC, ta có B E E D = B G G C (2)
Từ (1) và (2) suy ra B F F A = B G G C , do đó FG // AC (định lý Ta-lét đảo)
Vậy A, B, C đúng, D sai
Đáp án: D