Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vi met phut o lech san bech]
ffffffffffffffffffffffffffffffffffffffffffff,
gggggggggggggg,f,,,,,,,,,,,,,,,,
Gọi E,FE,F lần lượt là trung điểm của cạnh BD;ACBD;AC; HH trung điểm CA′CA′ và II là giao điểm của EFEF và AA′AA′
▹▹ Xét tam giác CA′ACA′A Có FHFH là đường trung bình nên AA′//FHAA′//FH ⇒A′I//FH⇒A′I//FH
▹▹ Xét tam giác EHFEHF có A′I//FHA′I//FH và A′A′ trung điểm EHEH nên suy ra II trung điểm EFEF
Suy ra AA′AA′ đi qua trung điểm II của EFEF cố định.
▹▹ Chứng minh tương tự ta cũng có BB′;CC′;DD′BB′;CC′;DD′ đi qua II
Vậy 4 đoạn thẳng AA′;BB′;CC′;DD′AA′;BB′;CC′;DD′ đồng quy tại một điểm
a, xét từ giác AMNC có
(Ac là tiếp tuyến của (O) ,
(MN vuông góc với CD) => \(\widehat{CAM}+\widehat{CNM}\)=180
=> AMNC nội tiếp
Xét tứ giác BMND có =90 ( BD là tiếp tuyến của (O) , \(\widehat{CND}\)=90 ( MN vuông góc với CD)
=> \(\widehat{MND}+\widehat{NAC}\)=180
=> Tứ giác BDMN nội tiếp
b, Ta có \(\widehat{CMN}=\widehat{NAC}\) (cùng chắn CN)
=> = cung AN(1)
Ta cũng có\(\widehat{NMD}+\widehat{NMD}\) (cùng chắn cung ND)
\(\widehat{NMD}\)= cung NB(2)
Từ (1) và (2) => \(\widehat{CMD}+\widehat{NMD}\)= (cung AN + cung NB)
=> \(\widehat{CMD}\)= cung AB = =90
=> tam giác CMD vuông tại M
Vì NMBD nội tiếp => \(\widehat{NDM}+\widehat{NBM}\) ( góc nội tiếp cùng chắn cung AM)
Mà \(\widehat{MCD}+\widehat{NBM}\)=90
=> \(\widehat{MCD}+\widehat{NBM}\)=90 (1)
Mặt khác \(\widehat{NAB}+\widehat{NBA}\)=90 (2)
Từ (1) và (2) => \(\widehat{MCD}=\widehat{NAB}\)
Xét tam giác ANB và CMD ta cs
\(\widehat{ANB}=\widehat{CMD}\) (=90)
\(\widehat{MCD}=\widehat{NAD}\)
=> 2 tam giác này bằng nhau