K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2016

Xét tứ giác OBMC ta có

2 đường chéo BC và OM cắt nhau tại I

I là trung điểm BC (gt)

I là trung điểm OM ( M là điểm đối xứng của O qua I)

-> tứ giác OBMC là hbh 

cmtt tứ giác ODNC là hbh

ta có

BM // OC ( OBMC là hbh)

DN // OC (ODNC là hbh)

-.> BM//CN

ta có 

BM // OC ( OBMC là hbh)

DN // OC (ODNC là hbh)

-.> BM//CN // OC

ta có 

BM = OC ( OBMC là hbh)

DN = OC (ODNC là hbh)

-.> BM  = ON

Xét tứ giác BMND ta có

BM // ON (cmt)

BM = ON (cmt)

-> tứ giác BMND là hbh

b) giả sử BMND là hcn

ta có

MB vuông góc BD ( BNMD là hcn)

BM // OC ( OBMC là hbh)

-> BD vuông góc OC tại O

Vậy AC vuông góc BD thì BMND là hcn

c) ta có 

BD // CM ( OB // CM ; O thuộc BD)

BD // CN ( OD //CN . O thuộc BD)

-> CM trùng CN

-> C,N,M thẳng hàng

11 tháng 6 2018

Hình:

Ôn tập cuối năm phần số học

Giải:

a) Ta có:

\(\left\{{}\begin{matrix}BH=HC\\MH=HO\end{matrix}\right.\)

Nên tứ giác BMCO là hình bình hành

\(\Rightarrow\left\{{}\begin{matrix}BM//OC\\BM=OC\end{matrix}\right.\left(1\right)\)

Tương tự, tứ giác OCND là hình bình hành

\(\Rightarrow\left\{{}\begin{matrix}DN//OC\\DN=OC\end{matrix}\right.\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}BM//DN\\BM=OC=DN\end{matrix}\right.\)

Suy ra tứ giác BMND là hình bình hành

b) Để hình bình hành BMND trở thành hình chũ nhật thì BM⊥BD

Đồng thời BM//AC

Nên AC⊥BD

c) Vì BMCO là hình bình hành nên MC//BD (3)

Và BMND là hình bình hành nên MN//BD (4)

Từ (3) và (4), suy ra M,N,C thẳng hàng (theo tiên đề Ơ-clit)

Vậy ...

a: Xét tứ giác BOCM có

I là trung điểm của BC

I là trung điểm của OM

Do đó: BOCM là hình bình hành

Suy ra: BM//CO; BM//CO

Xét tứ giác DOCN có 

K là trung điểm của DC

K là trung điểm của ON

Do đó: DOCN là hình bình hành

Suy ra: OC//DN; OC=DN

Xét tứ giác BDNM có

BM//DN

BM=DN

Do đó: BDNM là hình bình hành

c: Ta có: BDNM là hình bình hành

nên MN//BD

mà CN//BD

và MN,CN có điểm chung là N

nên M,N,C thẳng hàng

a: Xét tứ giác BOCM có

I là trung điểm chung của BC và OM

=>BOCM là hbh

=>OC//BM và OC=BM

Xét tứ giác DOCN có

K là trung điểm chung của DC và ON

=>DOCN là hbh

=>DN//OC và DN=OC

=>DN//BM và DN=BM

=>BDNM là hbh

c: BO//CM

NC//DO

mà B,O,D thẳng hàng

nên M,C,N thẳng hàng