K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(\begin{array}{l}\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = \left( {\overrightarrow {MG}  + \overrightarrow {GE}  + \overrightarrow {EA} } \right) + \left( {\overrightarrow {MG}  + \overrightarrow {GE}  + \overrightarrow {EB} } \right)\\ + \left( {\overrightarrow {MG}  + \overrightarrow {GF}  + \overrightarrow {FC} } \right) + \left( {\overrightarrow {MG}  + \overrightarrow {GF}  + \overrightarrow {FD} } \right)\end{array}\)

\( = \left( {\overrightarrow {MG}  + \overrightarrow {MG}  + \overrightarrow {MG} \overrightarrow { + MG} } \right) + 2\left( {\overrightarrow {GE}  + \overrightarrow {GF} } \right) \\+ \left( {\overrightarrow {EA}  + \overrightarrow {EB} } \right) + \left( {\overrightarrow {FC}  + \overrightarrow {FD} } \right)\)

\( = 4\overrightarrow {MG}  + 2.\overrightarrow 0  + \overrightarrow 0  + \overrightarrow 0  = 4\overrightarrow {MG} \)  (đpcm)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OC}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {OC}  + \overrightarrow {OD} } \right) = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \overrightarrow 0  + \overrightarrow 0  = 4\overrightarrow {MO} \\ \Leftrightarrow 4\overrightarrow {MO}  = 4\overrightarrow {MO} \) (luôn đúng)

(vì O là giao điểm 2 đường chéo nên là trung điểm của AB, CD)

b) ABCD là hình bình hành nên ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Suy ra \(\)\(\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} = \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) + \overrightarrow {AC}  = \overrightarrow {AC}  + \overrightarrow {AC}  = 2\overrightarrow {AC} \) (đpcm)

NV
13 tháng 1 2021

Chắc chắn là đề bài sai rồi

Vế trái là 1 đại lượng vô hướng

Vế phải là 1 đại lượng có hướng (vecto)

Hai vế không thể bằng nhau được

14 tháng 1 2021

Em viết nhầm ạ, vế phải đó là 

\(\overrightarrow{IJ}^2\)

20 tháng 10 2019
https://i.imgur.com/WTLRce6.jpg
NV
8 tháng 9 2021

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)

\(\Leftrightarrow\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}=\overrightarrow{AC}\)

\(\Leftrightarrow4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{AO}\)

\(\Leftrightarrow4\overrightarrow{MO}=2\overrightarrow{OA}\)

\(\Leftrightarrow\overrightarrow{MO}=\dfrac{1}{2}\overrightarrow{AO}\)

\(\Rightarrow M\) là trung điểm OA

8 tháng 9 2021

C

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow 0  \Leftrightarrow  - \overrightarrow {OA}  = \overrightarrow {OB} \)

\(\Rightarrow {\overrightarrow {MO} ^2} - {\overrightarrow {OA} ^2} = \left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO}  - \overrightarrow {OA} } \right) \\= \left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO}  + \overrightarrow {OB} } \right) = \overrightarrow {MA} .\overrightarrow {MB} \) (đpcm)