Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a: Xét ΔABD có M,Q lần lượt là trung điểm của AB,AD
=>MQ là đường trung bình
=>MQ//BD và MQ=BD/2
Xét ΔCBD có
P,N lần lượt là trung điểm của CD,CB
=>PN là đường trung bình
=>PN//BD và PN=BD/2
=>MQ//PN và MQ=PN
Xét tứ giác MNPQ có
MQ//PN
MQ=PN
=>MNPQ là hình bình hành
Xét ΔCAB có
I,N lần lượt là trung điểm của CA,CB
=>IN là đường trung bình
=>IN//AB và IN=AB/2
Xét ΔDAB có K,Q lần lượt là trung điểm của DB,DA
=>KQ là đường trung bình
=>KQ//AB và KQ=AB/2
=>IN//KQ và IN=KQ
=>INKQ là hình bình hành
b: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường(1)
INKQ là hình bình hành
=>IK cắt NQ tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra MP,NQ,IK đồng quy
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)
Xét ΔCDA có
P là trung điểm của CD
Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔCDA
Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2)suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a) QQ là trung điểm của ADAD
MM là trung điểm của ABAB
⇒QM⇒QM là đường trung bình của ΔABDΔABD
⇒QM∥=12BD⇒QM∥=12BD (1)
Tương tự PNPN là đường trung bình của ΔBCDΔBCD
⇒PN∥=12BD⇒PN∥=12BD (2)
Từ (1) và (2) suy ra QM∥=PN(∥=12BD)QM∥=PN(∥=12BD)
⇒⇒ tứ giác MNPQMNPQ là hình bình hành.
Ta có: QQ là trung điểm của ADAD
JJ là trung điểm của ACAC
⇒QJ⇒QJ là đường trung bình của ΔACDΔACD
⇒QJ∥=12CD⇒QJ∥=12CD (1)
Tương tự KNKN là đường trung bình của ΔBCDΔBCD
⇒KN∥=12CD⇒KN∥=12CD (2)
Từ (1) và (2) suy ra QJ∥=KN(∥=12CD)QJ∥=KN(∥=12CD)
⇒⇒ tứ giác JNKQJNKQ là hình bình hành.
b) Tứ giác MNPQMNPQ là hình bình hành
⇒ Gọi MP∩QN=O⇒ Gọi MP∩QN=O
⇒O⇒O là trung điểm của MPMP và QNQN
Tứ giác INKQINKQ là hình bình hành
Có hai đường chéo là QNQN và KJKJ
OO là trung điểm của QNQN
⇒O⇒O là trung điểm của KJKJ
⇒MP,NQ,JK⇒MP,NQ,JK đồng quy tại OO trung điểm của mỗi đường.