Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối BD, gọi diện tích các tam giác (theo hình vẽ) là S1,S2,S3,S4.S1,S2,S3,S4. Ta có BN là trung tuyến của ΔBCDΔBCD nên S1=S2S1=S2 (chung đường cao, đáy bằng nhau)
Tương tự S3=S4S3=S4
⇒S2+S3=S1+S4=12SABCD⇒S2+S3=S1+S4=12SABCD
Hay SBNDM=1/2SABCD.SBNDM=1/2SABCD.
tk
Nối BD, gọi diện tích các tam giác (theo hình vẽ) là S1,S2,S3,S4.S1,S2,S3,S4. Ta có BN là trung tuyến của ΔBCDΔBCD nên S1=S2S1=S2 (chung đường cao, đáy bằng nhau)
Tương tự S3=S4S3=S4
⇒S2+S3=S1+S4=12SABCD⇒S2+S3=S1+S4=12SABCD
Hay SBNDM=1/2SABCD.SBNDM=1/2SABCD.
1: Xét tứ giác AMND có
\(\widehat{ADN}=\widehat{DAM}=\widehat{MND}=90^0\)
Do đó: AMND là hình chữ nhật
2: Xét tứ giác AKBD có
M là trung điểm của đường chéo KD
M là trung điểm của đường chéo AB
Do đó: AKBD là hình bình hành
Trả lời:
1: Xét tứ giác AMND có
ˆADN=ˆDAM=ˆMND=900ADN^=DAM^=MND^=900
Do đó: AMND là hình chữ nhật
2: Xét tứ giác AKBD có
M là trung điểm của đường chéo KD
M là trung điểm của đường chéo AB
Do đó: AKBD là hình bình hành
Chúc bạn học tốt nhé.
a. Vì ABCD là hcn nên \(AB=CD\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\Rightarrow AM=CN=BM=DN\)
Mà ABCD là hcn nên AB//CD hay AM//CN
Vậy AMCN là hbh
b. Vì AM=DN và AM//DN(AB//CD) và \(\widehat{MAD}=90^0\) nên AMND là hcn
Mà O là trung điểm MD nên O là trung điểm AN
Vậy A,O,N thẳng hàng
c. Vì BM=CN và BM//CN(AB//CD) và \(\widehat{MBC}=90^0\) nên BMNC là hcn
Mà I là trung điểm MC nên I là trung điểm BN hay MC giao BN tại I
Mà BMNC là hcn nên \(BN=MN\Rightarrow MI=IN\Rightarrow I\in\) trung trực MN
Mà AMND là hcn nên \(AN=MD\Rightarrow OM=ON\Rightarrow O\in\) trung trực MN
Vậy OI là trung trực MN hay O đx I qua MN
a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác
c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.
a) Ta có:-
- M là trung điểm của AB
⇒ AM = MB.
- N là trung điểm của BC
⇒ BN = NC.
- P là trung điểm của CD
⇒ CP = PD.
- Q là trung điểm của DA
⇒ DQ = QA.
Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.
⇒ tứ giác MNPQ là hình bình hành.
Có:
- I là trung điểm của AC
⇒AI = IC.
- K là trung điểm của BD
⇒ BK = KD.
Do đó, ta có: AI = IC = BK = KD.
⇒ tứ giác INKQ là hình bình hành.
b)Gọi O là giao điểm của MP và NQ ta có:
MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).
⇒ MP song song với NQ.
do đó :O nằm trên MP và NQ.
Gọi H là giao điểm của MI và NK ta có:
MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD).
⇒ MI song song với NK.
Do đó: H nằm trên cả MI và NK.
Gọi G là giao điểm của OH và BD ta có:
OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên MI và NK).
⇒ OH song song với BD.
doo đó: G nằm trên OH và BD.
⇒ I, O, K thẳng hàng.(ĐPCM)
a: Xét ΔBAC có BM/BA=BN/BC=1/2
nên MN//AC và MN=1/2AC
Xét ΔDAC có DQ/DA=DP/DC
nên PQ//AC và PQ/AC=DQ/DA=1/2
=>PQ=1/2AC
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔCAB có CI/CA=CN/CB=1/2
nên IN//AB và IN=1/2AB
Xét ΔDAB có DQ/DA=DK/DB=1/2
nên QK//AB và QK=1/2AB
=>IN//QK và IN=QK
=>INKQ là hình bình hành
b: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường
=>O là trung điểm của NQ
INKQ là hbh
=>IK cắt NQ tại trung điểm của mỗi đường
=>I,O,K thẳng hàng
a: Xét tứ giác BMDN có
BM//ND
BM=ND
Do đó: BMDN là hình bình hành
Suy ra: MD//BN